K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

a/

$xy-2x+y=13$

$\Rightarrow x(y-2)+(y-2)=11$

$\Rightarrow (y-2)(x+1)=11$

Với $x,y$ là số nguyên thì $x+1, y-2$ cũng là số nguyên. Mà tích của chúng bằng $11$ nên ta xét các TH sau:
TH1: $x+1=1, y-2=11\Rightarrow x=0; y=13$

TH2: $x+1=-1, y-2=-11\Rightarrow x=-2; y=-9$

TH3: $x+1=11, y-2=1\Rightarrow x=10; y=3$

TH4: $x+1=-11, y-2=-1\Rightarrow x=-12; y=1$

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

Câu b bạn xem lại đề. $2y$ hay $3y$ vậy bạn?

18 tháng 11 2016

Mình viết gọn thôi nhé , tại nhiều câu quá ^^

a/ \(\left(x+1\right)\left(1-y\right)=2\)

b/ \(\left(x+2\right)\left(y-1\right)=13\)

c/ \(\left(x-2\right)\left(y+3\right)=1\)

d/ \(\left(x-1\right)\left(y-1\right)=3\)

e/ \(\left(2x-y\right)\left(x+2y\right)=7\)

Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^

19 tháng 11 2016

vết tn mk ko hiểu tại sao lại phân tích như vậy

còn cách tìm nghiệm thì mk pit

 

22 tháng 2 2018

-2x^2 - y^2 + 3xy + 4x - y = 7​ 1) ( PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } )

{4X2 - 2Y2 + 6XY + X - 3Y = 6 (2)

b. { x2 + y2 - xy + 3x - 2y = 2 (3) [ PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } ]

{2x2 - 3y2 + 3xy + x + 6y = 9 (4)

c. { 3x2 - y2 - 4xy + 7x - y - 6 = 0 (5) ( PHƯƠNG TRÌNH (5) VÀ (6) LÀ 1 )

{ 2x2 + y2 + 3x - 2y = 4 (6)

22 tháng 2 2018

ko hiểu

26 tháng 10 2019

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

26 tháng 10 2019

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

6 tháng 11 2017

khó .mình chịu

6 tháng 11 2017

Hình như bài này lớp 6 cx có

k cho mk nha

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

25 tháng 8 2020

a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)

\(A=xy\left(x+y\right)+\left(y-x\right)\)

\(A=\left(-5\right).2\left(-5+2\right)+2+5\)

\(A=30+7=37\)

b) \(B=3x^3-2y^3-6x^2y^2+xy\)

\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)

\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)

\(B=\frac{11}{36}\)

c) \(C=2x+xy^2-x^2y-2y\)

\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)

\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)

\(C=-\frac{11}{36}\)