Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Để |x-2011y|+(y-1)2012=0 thì cả hai số hạng trên cùng bằng 0 hoặc hai số hạng trên trái dấu nhau nhưng |x-2011y| luôn lớn hơn hoặc bằng 0, (y-1)2012 có số mũ chẵn nên cũng lớn hơn hoặc bằng 0
=> Cả hai số trên cùng dấu nên cả hai số trên đều phải bằng 0
=> (y-1)2012 =0 và |x-2011y|=0
=> y-1=0=>y=1 và |x-2011y|=0<=> |x-2011.1|=0=>x-2011=0=>x=2011
Vậy x=2011 và y=1
Ta dễ dàng nhận thấy :
\(|x-2011y|\ge0\)
\(\left(y-1\right)^{2012}\ge0\)
Cộng lại ta có :
\(|x-2011y|+\left(y-1\right)^{2012}\ge0\)
Dấu = xảy ra \(< =>\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)
\(< =>\hept{\begin{cases}x-2011=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=2011\\y=1\end{cases}}\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)
vậy x=7, x=8 hay x=6
a,\(|x-2006y|+|x-2012|\le0\left(1\right)\)
Có \(|x-2006y|\ge0\forall x,y\left(2\right)\)
Có\(|x-2012|\ge0\forall x\left(3\right)\)
Từ (1) , (2) , (3)=> \(|x-2006y|+|x-2012|=\)0(4)
Từ (2),(3),(4)
<=>\(\hept{\begin{cases}x-2006y=0\\x-2012=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2006y\left(5\right)\\x=2012\left(6\right)\end{cases}}\)
thay x=2012 vào (5) ta có
2012=2006y
<=>y=\(\frac{1006}{1003}\)
Vậy x=2012;y=\(\frac{1006}{1003}\)
b,\(|x-2011y|+|y-1|=0\left(7\right)\)
Có\(|x-2011y|\ge0\forall x,y\left(8\right)\)
\(|y-1|\ge0\forall y\left(9\right)\)
Từ (6),(7),(8)
<=>\(\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2011y\left(10\right)\\y=1\left(11\right)\end{cases}}\)
thay y=1 vào (10) ta có
x=2011.1=2011
vậy x=2011;y=1
a/ | x-2011y | + ( y-1)2017=0
Câu này có gì đó nhầm lẫn rồi
b/ (2x -1)2 + | 2y - x | - 8 = 12 - 5.22
=> (2x -1)2 + | 2y - x | - 8 = 12 - 20
=> (2x -1)2 + | 2y - x | = 0
=> (2x -1)2 + | 2y - x | = 0
Ta thấy (2x -1)2 và | 2y - x | luôn lớn hơn hoặc bằng 0
=> (2x -1)2 + | 2y - x | = 0
<=> (2x -1)2 = 0 và | 2y - x | = 0
=> 2x -1 = 0 2y - x = 0
=> x = 1/2 y = x/2 = 1/4
c/ | x - 2014y | + | x - 2015 | = 0
Tương tự b nhé bạn
Ta có: (x - 2)2012 + | y2 - 9 |2014 = 0
=> (x - 2)2012 = 0 và | y2 - 9 |2014 = 0
+) ( x - 2 )2012 = 0
=> (x - 2)2012 = 02012
=> x-2 = 0 => x = 2
+) | y2 - 9 |2014 = 0
=> | y2 - 9 |2014 = 02014
=> | y2 - 9 | = 0
=> y2 - 9 = 0
=> y2 = 9
=> y = 3 hoặc y = -3
Vậy..........
Bạn tham khảo ở đây nhé => https://olm.vn/hoi-dap/question/607241.html
\(\left\{\begin{matrix}\left|x-2011y\right|\ge0\\\left(y-1\right)^{2012}\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-2011y=0\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011=0\Rightarrow x=2011\\y=1\end{matrix}\right.\)
Vậy................