Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)
Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.
Đây là cách giải của mk:
215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.
=> 215+211 chia hết cho 17.
\(2^x.2^2.2^2=2^3\Rightarrow2^{x+2+2}=2^3\Rightarrow x+4=3\Rightarrow x=-1\)-1
\(\left(5^2+3^2\right).x+\left(5^2-3^2\right).x-40.x=10^2\)
\(\Rightarrow x.\left(5^2+3^2+5^2-3^2-40\right)=10^2\)
\(\Rightarrow x.\left(2.5^2-40\right)=10^2\)
\(\Rightarrow x.10=10^2\Rightarrow x=10^2:10\Rightarrow x=10\)