Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, (2x-1)(y+1)=7
Vì x,y thuộc N => 2x-1 và y+1 thuộc N
=> 2x-1; y+1 thuộc Ư (7)={1;7}
Ta có bảng
2x-1 | 1 | 7 |
x | 1 | 4 |
y+1 | 7 | 1 |
y | 6 | 0 |
3, 2xy+6x+y=1
<=> 2x(y+3)+(y+3)=4
<=> (2x+1)(y+3)=4
Vì x, y thuộc N => 2x+1; y+3 thuộc N
=> 2x+1; y+3 thuộc Ư (4)={1;2;4}
Ta có bảng
2x+1 | 1 | 2 | 4 |
x | 0 | \(\frac{1}{2}\) | \(\frac{3}{2}\) |
y+3 | 4 | 2 | 1 |
y | 1 | -1 | -2 |
Vậy (x;y)=(0;1)
1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2])
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3.
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị.
2. Đặt x = cosα và y = sinα (với α trên [0,3π/2])
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α)
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1.
Ta áp dụng P' = 0 tiếp.
lam phan b thoi chu phan a de xem da
x2y+x+2xy=-9
=>(x.y).(x+2)+x=-9
=>(x.y).(x+2)+x+2=-9
=>(x+2).[(x.y)+1]=-9=9.1;1.9;3.(-3);-3.3
x+2 | 9 | 1 | 3 | -3 |
x | 7 | -1 | 1 | -5 |
x.y+1 | 1 | 9 | -3 | 3 |
y | 0 | -8 | -2 | -0,4 |
Kết luận | TM | TM | TM | loại |
Vậy (x;y)=(7;0);(-1;-8);(1;-2)
a, ( x + 1 ) . ( y + 2 ) = 4
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}x+1=1\\y+2=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}x+1=2\\y+2=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=0\end{cases}}\)
b , ( 2x - 1 ) . ( y + 1 ) = 7
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}2x-1=1\\y+1=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=6\end{cases}}\)
TH2: \(\hept{\begin{cases}2x-1=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=0\end{cases}}}\)
c , x + 6 = y . ( x - 1 )
\(\Leftrightarrow x-xy+y+6=0\)
\(\Leftrightarrow-x\left(y-1\right)+\left(y-1\right)=-7\)
\(\Leftrightarrow\left(y-1\right)\left(x-1\right)=7\)
Vì x,y là số tự nhiên nên:
TH1: \(\hept{\begin{cases}y-1=1\\x-1=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
TH2: \(\hept{\begin{cases}y-1=7\\x-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=8\\x=2\end{cases}}\)
d, 2xy + 6x + y = 1
\(\Leftrightarrow2x\left(y+3\right)+\left(y+3\right)=4\)
\(\Leftrightarrow\left(2x+1\right)\left(y+3\right)=4\)
Vì x,y là số tự nhiên nên::
\(\hept{\begin{cases}2x+1=1\\y+3=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
a) Vì | x+1| lớn hơn hoặc bằng 0
|y-1/2| lớn hơn hoặc bằng 0
Mặt khác : |x+1| + |y-1/2| =0
<=> |x+1| =0
<=> x+1 = 0
<=> x = -1
| y-1/2| = 0
<=> y - 1/2 = 0
<=> y = 0 + 1/2
<=> y = 1/2
Vậy x=-1 và y = 1/2
b) 2xy + y + 4x = 3
<=> y(2x +1) + 4x = 3
<=> y(2x+1) + (4x+2) -2=3
<=> y(2x+1) +2(2x+1) = 5
<=> (2x+1)(y+2) = 5
<=> (2x+1)(y+2) = 1.5 =(-1) . (-5)
Xét TH1 : 2x + 1 =1 ; y+2 = 5
=> x = 0 ; y =3
Xét TH2 :2x+1 = 5; y+2= 1
=> x = 2 ; y= -1
Xét TH3: 2x + 1 = -1 ; y + 2 = -5
=> x = -1 ; y = -7
Xét TH4: 2x+ 1 = -5 ; y+2 = -1
=> x = -3 ; y = -3
Vậy (x,y) = (-3,-3) ; (-1, -7) ; (2,-1) ; (0,3)
Chúc bạn học tốt.
Ta có;\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
\(\Rightarrow\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)
\(\Rightarrow2.y+2x+1=xy\)
\(\Rightarrow2x+1=y.\left(x-2\right)\)
\(\Rightarrow2.\left(x-2\right)+5=y.\left(x-2\right)\)
\(\Rightarrow\left(2-y\right).\left(x-2\right)=5\)
Bn kẻ bảng nha