Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
a) \(x+\frac{5}{12}=-1\frac{2}{7}\)
\(\Leftrightarrow x+\frac{5}{12}=\frac{-9}{7}\)
\(\Leftrightarrow x=\frac{-143}{84}\)
Vậy ...
b) \(4\frac{1}{2}x:\frac{5}{12}=0,5\)
\(\Leftrightarrow\frac{9}{2}x=\frac{5}{24}\)
\(\Leftrightarrow x=\frac{5}{108}\)
vậy...
c) \(7,5.1\frac{3}{4}x=6\frac{2}{5}\)
\(\Leftrightarrow\frac{105}{8}x=\frac{32}{5}\)
\(\Leftrightarrow x=\frac{256}{525}\)
Vậy ...
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)< x< \frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)
⇒ \(\frac{4}{3}.\left(\frac{-1}{3}\right)< x< \frac{2}{3}.\left(\frac{7}{12}\right)\)
⇒ \(\frac{-4}{9}< x< \frac{7}{18}\)
⇒ \(\frac{-8}{18}< x< \frac{7}{18}\)
mà -8<x<7
⇒ x ϵ \(\left\{-7;-6;-5;-4;....;5;6\right\}\)
a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)
\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)
\(\frac{5}{6}.x=\frac{2}{15}\)
\(x=\frac{2}{15}:\frac{5}{6}\)
\(x=\frac{4}{25}\)
b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
\(x-\frac{1}{5}=0\)
\(x=0+\frac{1}{5}\)
\(x=\frac{1}{5}\)
a) \(\frac{3}{4}+\frac{1}{4}:x=-\frac{2}{5}\)
\(\frac{1}{4}:x=-\frac{23}{20}\)
\(x=-\frac{5}{23}\)
b) \(\frac{2}{5}-\left(\frac{1}{5}+x\right)=0,5\)
\(\frac{1}{5}+x=-\frac{1}{10}\)
\(x=-\frac{3}{10}\)
a) 3/4+1/4:x=2/-5
1/4:x=-2/5-3/4
1/4:x=-23/20
x=1/4:-23/20
x=-5/23
b)2/5-(1/5+x)=0,5
2/5-(1/5+x)=1/2
1/5+x=2/5-1/2
1/5+x=-1/10
x=-1/10-1/5
x=-3/10
dấu / là dấu phân số