Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x+2)(x+5)<0
=>x+5>0 và x+2<0
=>-5<x<2
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1;0;1\right\}\)
b: \(\left(x^2-8\right)\left(x^2+10\right)< 0\)
\(\Leftrightarrow x^2-8< 0\)
\(\Leftrightarrow x^2< 8\)
mà x là số nguyên
nên \(x\in\left\{0;1;-1;2;-2\right\}\)
c: (x-2)(x+1)<0
=>x+1>0 và x-2<0
=>-1<x<2
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Ta thấy : \(x^3+5\) < \(x^3+10\) < \(x^3+15\) < \(x^3+30\)
Nếu có 1 thừa số âm : \(x^3+5<0\) < \(x^3+10\) nên \(x^3=-8\Rightarrow x=-2\)
Nếu có 3 thừa số âm : \(x^3+15<0\) < \(x^3+30\) nên \(x^3=-27\Rightarrow x=-3\)
Vậy \(x\in\left(-3;-2\right)\)
Để (x3 + 5) . (x3 + 10) . (x3 + 15) x (x3 + 30) < 0
Mà x3 + 5 < x3 + 10 < x3 + 15 < x3 + 30 nên
<=> x3 + 5 < 0 => x3 < -5 => x \(\le\) -2
hoặc x3 + 5 < 0 và x3 + 10 < 0 và x3 + 15 < 0
=> x3 + 15 < 0 => x3 < -15 => x \(\le-3\)
Vậy \(x\le2\) với \(x\in Z\)
Bài 1:
\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
a. |x||x| + |+6||+6| = |−27|
x + 6 = 27
x = 27 - 6
x = 21
Vậy x = 21
b. |−5||−5| . |x||x| = |−20|
5 . x = 20
x = 20 : 5
x 4
Vậy x = 4
c. |x| = |−17| và x > 0
|x| = 17
Vì |x| = 17
nên x = -17 hoặc 17
mà x > 0 => x = 17
Vậy x = 17 hoặc x = -17
d. |x||x| = |23||23| và x < 0
|x| = 23
Vì |x| = 23
nên x = 23 hoặc -23
mà x < 0 => x = -23
e. 12 ≤≤ |x||x| < 15
Vì 12 ≤ |x| < 15
nên x = {12; 13; 14}
Vậy x € {12; 13; 14}
f. |x| > 3
Vì |x| > 3
nên x = -2; -1; 0; 1; 2;
Vậy x € {-2; -1; 1; 2}
a. A=
{
x∈Z|−3<x≤7}
A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}
b. B={x∈Z|3≤|x|<7}
B = {3; 4; 5; 6}
c. C={x∈Z||x|>5}
C = {6; 7; 8; 9; ...}
a) Để \(4\left(x-8\right)< 0\) thì \(x-8< 0\).
\(\Rightarrow x< 0+8\Rightarrow x< 8\)
\(\Rightarrow x\in\left\{7;6;5;4;3\right\}\)
b) Để \(-3\left(x-2\right)< 0\) thì \(x-2>0\)
\(\Rightarrow x>0+2\Rightarrow x>2\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
từ pt đã cho
=> x^2-25=0 hoặc x^3+8=0
=>x^2=25 hoặc x^3=-8
=> x=-5 ; x=5 hoặc x=-2
vậy x=-5;x=5,x=-2 là nghiệm phương trình
(x^2-25).(x^3+8)=0
=>TH1:
x^2-25=0
x^2=0+25
x^2=25=5^2
=>x=5
TH2:
x^3+8=0
x^3=0+8
x^3=8=2^3
=>x=2
Vậy:x=5;2