K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Ta có : x+ 6x+ 6x + 1 = 0

=> x3 + 6x2.1 + 6x.12 + 13 = 0

=> (x + 1)3 = 0

=> x + 1 = 0

=> x = -1 

X^3+6x^2+6x+1=0

=>x^3+6x^2x1+6xx1^2+1^3=0

=>(x+1)^3=0

=> x+1=0

=>-1

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

16 tháng 6 2017

cái j sao khó nhìn vậy

11 tháng 2 2022
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT
15 tháng 7 2016

a)\(x^2+6x+5=0\)

=>\(x^2+x+5x+5=0\)

=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

Vậy x=-1 hoặc x=-5

b)\(2x^2+6x+4=0\)

=>\(2x^2+2x+4x+4=0\)

=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(2x+4\right)=0\)

=>\(\left(x+1\right)2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)

Vậy x=-1 hoặc x=-2

15 tháng 7 2016

(x^2+6x+9)-4=0

(x+3)^2=4

x+3=2

x=-1

24 tháng 7 2019

Tên chữ Cam là sao

24 tháng 7 2019

Bài 1:

a) -6x + 3(7 + 2x)

= -6x + 21 + 6x

= (-6x + 6x) + 21

= 21

b) 15y - 5(6x + 3y)

= 15y - 30 - 15y

= (15y - 15y) - 30

= -30

c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)

= 2x2 + x - x3 - 2x2 + x3 - x + 3

= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3

= 3

d) x(5x - 4)3x2(x - 1) ??? :V

Bài 2:

a) 3x + 2(5 - x) = 0

<=> 3x + 10 - 2x = 0

<=> x + 10 = 0

<=> x = -10

=> x = -10

b) 3x2 - 3x(-2 + x) = 36

<=> 3x2 + 2x - 3x2 = 36

<=> 6x = 36

<=> x = 6

=> x = 5

c) 5x(12x + 7) - 3x(20x - 5) = -100

<=> 60x2 + 35x - 60x2 + 15x = -100

<=> 50x = -100

<=> x = -2

=> x = -2

30 tháng 3 2018

câu 1,2 bn làm dc rùi nhé

ta có f(x)-g(x)=(x3-3x2+6x-8)-(-6x2+x3-8+12x)

=x3-3x2+6x-8+6x2-x3+8-12

=3x2-6x

Do f(x) -g(x)=0   => 3x2-6x=0

=> 3x(x-3)=0

\(\Rightarrow\orbr{\begin{cases}3x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy x=0 hoặc x=3

1 tháng 4 2018

sai r bạn ơi

16 tháng 3 2017

+)     \(Q=2x^2-6x+x^2+6x-12\)

            \(=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)

            \(=3x^2-12\)

 \(Cho\)           \(Q=0\)   \(\Rightarrow3x^2-12=0\)

                                             \(\Rightarrow3x^2=12\)

                                             \(\Rightarrow x^2=4\)

                                             \(\Rightarrow x=2\)\(hay\)\(x=-2\)

VẬY ........... ( NẾU SAI THÌ THÔI NHÉ    >-<   )

16 tháng 3 2017

\(Q=2x^2-6x+x^2+6x-12\)

\(Q=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)

\(Q=3x^2-12\)

\(\Leftrightarrow3x^2=0+12\)

\(\Leftrightarrow x^2=12:3\)

\(\Leftrightarrow x^2=4=2^2\Rightarrow x=2\)

Vậy với \(x=2\)thì \(Q=0\)

Các bạn nữ (xinh) k và kb làm người yêu mình nha !!!!!!!!!!!!!!!

25 tháng 6 2017

Bài 1:

a, \(x^2-6x+10=x^2-3x-3x+9+1\)

\(=x.\left(x-3\right)-3.\left(x-3\right)+1=\left(x-3\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy................... (đpcm)

b, \(4x-x^2-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2x-2x+4+1\right)\)

\(=-\left[x.\left(x-2\right)-2.\left(x-2\right)+1\right]\)

\(=-\left[\left(x-2\right)^2+1\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)

\(\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1< 0\)

Vậy............... (đpcm)

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5\)

\(P=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\)ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x=1\)

Vậy........

b, Xem lại đề.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\)ta có:

\(\left(x-\dfrac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(M=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy............

Chúc bạn học tốt!!!

25 tháng 6 2017

Bài 1 :

a) \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1>0\) với mọi \(x\) (vì \(\left(x-3\right)^2\ge0\) )

\(\rightarrowđpcm\)

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 1\) (vì \(-\left(x-2\right)^2< 0\) với mọi x)

\(\rightarrowđpcm\)

25 tháng 6 2017

Bài 2:

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(P=\left(x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_P=4\) khi x = 1

c, \(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)