Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(x^3+x^2-9x-9=0\Leftrightarrow x^2\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-9\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=-1;\pm3\)
c, \(x^2-3x-10=0\Leftrightarrow x^2+2x-5x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=5;-2\)
a,\(x^2y-4y=y\left(x^2-4\right)=y\left(x-2\right)\left(x+2\right)\)
b,\(x^2-y^2-2x+1=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x-y-1\right)\)
c,\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
x2y - 4y = y( x2 - 4 ) = y( x - 2 )( x + 2 )
x2 - y2 - 2x + 1 = ( x2 - 2x + 1 ) - y2 = ( x - 1 )2 - y2 = ( x - 1 - y )( x - 1 + y )
5x2 + 5xy - x - y = ( 5x2 + 5xy ) - ( x + y ) = 5x( x + y ) - ( x + y ) = ( x + y )( 5x - 1 )
\(x^2+6x=0\)
\(x.\left(x+6\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-6\end{cases}}}\)
Vậy \(x=0;x=-6\)
\(\left(x-4\right)\left(x+4\right)-x\left(x-2\right)=0\)
\(x^2-16-x^2+2x=0\)
\(2x-16=0\)
\(2.\left(x-8\right)=0\)
\(x-8=0\)
\(x=8\)
Vậy \(x=8\)
\(x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow x=0;-6\)
\(\left(x-4\right)\left(x+4\right)-x\left(x-2\right)=0\)
\(\Leftrightarrow x^2-16-x^2+2x=0\Leftrightarrow-16+2x=0\Leftrightarrow x=8\)
\(\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\left(3x-6\right)x=0\)
\(\Rightarrow\orbr{\begin{cases}3x-6=0\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy ....
\(\left(2x-3\right)^2-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\Leftrightarrow\left(3x-9\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-9=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
vậy nghiệm của pt là x={3;0}
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
b) nhẩm đưuọc nghiệm x=1
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x^2-5x+6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-3\right)\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\) KL x=1,2,3
c)
(x^2+3x+1)^2=x^4+9x^2+1+6x^3+2x^2+6x (nhân pp dẽ hơn ghép)
\(\orbr{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\x=\frac{3+\sqrt{5}}{2}\end{cases}}\)
\(x^3-2x^2-x+2=0\Leftrightarrow x^3-x-2x^2+2=0\)
\(\Leftrightarrow x\left(x^2-1\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=2;\pm1\)
\(x^3-2x^2-x+2=0\)
\(x^2.\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^2-1\right)=0\)
\(\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=1\\x=-1\end{cases}}}\)
Vậy \(x=2;x=1;x=-1\)