Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
<=>\(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}\)
<=>\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
<=>\(7^x=5^{2x}\)<=>\(7^x=10^x\)<=>x=0
Vậy x=0
\(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
Để \(\left(2x+5\right)\left(4-\frac{1}{2}x\right)< 0\)
=> : \(\orbr{\begin{cases}2x+5< 0\\4-\frac{1}{2}x< 0\end{cases}}\)
=> \(\orbr{\begin{cases}2x< -5\\\frac{1}{2}x< 4\end{cases}}\)
=> \(\orbr{\begin{cases}x< -\frac{5}{2}\\x< 8\end{cases}}\)
Vậy để : \(\left(2x+5\right)\left(4-\frac{1}{2}x\right)< 0\) thì \(x< \frac{-5}{2}\) hoặc : \(x< 8\)
\(\left(2x+5\right).\left(4-\frac{1}{2}x\right)< 0\)
=) \(2x+5< 0\)và \(4-\frac{1}{2}x>0\)
hoặc \(2x+5>0\)và \(4-\frac{1}{2}< 0\)
\(TH1:2x+5< 0\)và \(4-\frac{1}{2}x>0\)
* \(2x+5< 0\)=) \(2x< -5\)=) \(x< \frac{-5}{2}\)
* \(4-\frac{1}{2}x>0\)=) \(\frac{1}{2}x< 4\)=) \(x< 4:\frac{1}{2}=8\)
Vậy \(x< \frac{-5}{2}< 8\)=) Với \(x< \frac{-5}{2}=-2,5\)thì thỏa mãn đề bài
\(TH2:\left(2x+5\right)>0\)và \(4-\frac{1}{2}x< 0\)
* \(2x+5>0\)=) \(2x>-5\)=) \(x>\frac{-5}{2}\)
* \(4-\frac{1}{2}x< 0\)=) \(\frac{1}{2}x>4\)=) \(x>4:\frac{1}{2}=8\)
Vậy \(\frac{-5}{2}< 8< x\)
Vậy \(x>8\)thì thỏa mãn đề bài
Vậy \(x< \frac{-5}{2}\), \(x>8\)thì thỏa mãn đề bài .
1a) \(\frac{5}{1,2}=\frac{-2,5}{x}\)
\(\Leftrightarrow5x=-3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
b) \(\frac{3,2+\left(-0,4\right)}{-x-3,6}=\frac{-0,75}{1,5}\)
\(\Leftrightarrow\frac{2,8}{-x-3,6}=\frac{-0,75}{1,5}\)
\(\Leftrightarrow4,2=0,75x+2,7\)
\(\Leftrightarrow0,75x=1,5\)
\(\Leftrightarrow x=2\)
2) \(\frac{1}{3}.\frac{5}{7}=\frac{2}{7}.\frac{5}{6}\)
Tỉ lệ thức lập được \(\frac{5}{21}=\frac{10}{42}\)
Ta có:\(\left|\frac{1}{2}x\right|\ge0\Rightarrow3-2x\ge0\Rightarrow3\ge2x\Rightarrow x\le\frac{3}{2}\)
TH1:\(x< 0\),khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{-x}{2}=3-2x\)
\(\Rightarrow-x=6-4x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)(loại)
TH2:\(x\ge0\) thì khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{x}{2}=3-2x\)
\(\Rightarrow x=6-4x\)
\(\Rightarrow5x=6\)
\(\Rightarrow x=\frac{6}{5}\)(thỏa mãn)
Vậy \(x=\frac{6}{5}\)
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}
Theo đề ta có:
\(x-\frac{1}{7}=x-\frac{2}{3}\)
=> \(x=x-\frac{2}{3}+\frac{1}{7}\)
=> \(x=x-\frac{11}{21}\) (vô lý)
Vậy không tìm được x thỏa mãn đề bài. (nhớ k mình nha)