\(\sqrt{x+16}=x-4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

\(\sqrt{x+16}=x-4\) 

\(x+16=\left(x-4\right)^2\) 

\(x+16=x^2-8x+16\) 

\(x+16-x^2+8x-16=0\) 

\(9x-x^2=0\) 

\(x\left(9-x\right)=0\) 

=> x=0  hoặc   \(9-x=0\Leftrightarrow x=9\) 

Vậy.....

13 tháng 3 2020

\(B=\frac{x}{x-16}+\frac{2}{\sqrt{x}-4}+\frac{2}{\sqrt{x}+4}\)

\(=\frac{x}{x-16}+\frac{2\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{2\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x}{x-16}+\frac{2\sqrt{x}+8}{x-16}+\frac{2\sqrt{x}-8}{x-16}\)

\(=\frac{x+4\sqrt{x}}{x-16}=\frac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\frac{\sqrt{x}}{\sqrt{x}-4}\)

\(A=2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=2\sqrt{12}-\sqrt{75}+\left(2-\sqrt{3}\right)\)(vì \(\sqrt{3}< \sqrt{4}=2\))

\(\Rightarrow\frac{1}{2}A=\sqrt{12}-\frac{\sqrt{75}}{2}+1-\frac{\sqrt{3}}{2}\)

\(=\sqrt{12}+1-\frac{\sqrt{3}\left(1+5\right)}{2}=\sqrt{12}-3\sqrt{3}+1\)

\(=\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{3}+1\right)\left(\sqrt{x}-4\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3x}+\sqrt{x}-4\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{3x}-4\sqrt{x}-4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3}-4\right)=4\Leftrightarrow\sqrt{x}=\frac{4}{\sqrt{3}-4}\)

\(\Rightarrow x=\left(\frac{4}{\sqrt{3}-4}\right)^2=\frac{304+128\sqrt{3}}{-173}\)

13 tháng 3 2020

Mù mịt quá, sửa từ dòng 7 từ dưới lên 

\(=-\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=-\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-4\right)\left(1-\sqrt{3}\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x}-4-\sqrt{3x}+4\sqrt{3}\)

\(\Leftrightarrow-4-\sqrt{3x}+4\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{3}-4\)

\(\Leftrightarrow\sqrt{x}=\frac{4\left(\sqrt{3}-1\right)}{\sqrt{3}}\)

\(\Leftrightarrow x=\frac{64-32\sqrt{3}}{3}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge-1\)

\(\sqrt{x+1}=2\)\(\Rightarrow\left(\sqrt{x+1}\right)^2=4\)

\(\Rightarrow x+1=4\)\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy \(x=3\)

b) \(ĐKXĐ:x\ge2\)

\(2\sqrt{x-2}< 6\)\(\Leftrightarrow\sqrt{x-2}< 3\)

Vì \(\sqrt{x-2}\ge0\)\(3>0\)

\(\Rightarrow\left(\sqrt{x-2}\right)^2< 9\)\(\Leftrightarrow x-2< 9\)

\(\Leftrightarrow x< 11\)

Kết hợp với ĐKXĐ \(\Rightarrow2\le x< 11\)

Vậy \(2\le x< 11\)

c) \(ĐKXĐ:x\ge4\)

 \(\sqrt{x^2-16}=-\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x^2-16}+\sqrt{x-4}=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)

\(\Leftrightarrow\sqrt{x-4}.\left(\sqrt{x+4}+1\right)=0\)

Vì \(\sqrt{x+4}>0\)\(\Rightarrow\sqrt{x+4}+1>0\)

\(\Rightarrow\sqrt{x-4}=0\)\(\Leftrightarrow x-4=0\)\(\Leftrightarrow x=4\)

Vậy \(x=4\)

Ukm

It's very hard

l can't do it 

Sorry!

 
19 tháng 9 2017

Cc mày

18 tháng 6 2017

2.

A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)

\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1-\sqrt{3}-1\)

\(=-2\)

B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)

\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)

\(=\sqrt{5-2\sqrt{2}-2}\)

\(=\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)

\(=\sqrt{2}-1\)

11 tháng 8 2019

Bình phương 2 vế lên là được

19 tháng 8 2017

a, \(\left|\sqrt{x-1}+1\right|=2\) \(2\) (dk \(x\ge1\) )

\(\Rightarrow\sqrt{x-1}+1=2\Rightarrow\sqrt{x-1}=1\Rightarrow x=2\)

b. \(\sqrt{x-1}\left(\sqrt{x-2}-1\right)=0\) (dk \(x\ge2\) )

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=3\left(tm\right)\end{cases}}}\)

kl x=3

c,\(\sqrt{x^2-2.x.\frac{1}{4}+\frac{1}{16}}=\frac{1}{4}-x\)

dk \(\frac{1}{4}-x\ge0\Rightarrow x\le\frac{1}{4}\)

\(\Rightarrow\left|x-\frac{1}{4}\right|=\frac{1}{4}-x\Rightarrow\frac{1}{4}-x=\frac{1}{4}-x\)

pt luon dung voi moi \(x\le\frac{1}{4}\)

d,\(\left|6x-1\right|=5\)

th1 \(6x-1\ge0\Rightarrow x\ge\frac{1}{6}\)

\(\Rightarrow6x-1=5\Rightarrow x=1\)

th2 \(6x-1< 0\Rightarrow x< \frac{1}{6}\) 

\(\Rightarrow1-6x=5\Rightarrow x=\frac{-2}{3}\)

vay \(x=1,x=\frac{-2}{3}\)

12 tháng 9 2018

\(\sqrt{x}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\)

\(\Leftrightarrow2x+16+2\sqrt{x}.\sqrt{x+16}=2x+13+2\sqrt{x+4}.\sqrt{x+9}\)

\(\Leftrightarrow3+2\sqrt{x^2+16x}=2\sqrt{x^2+13x+36}\)

\(\Leftrightarrow9+12\sqrt{x^2+16x}+4x^2+64x=4x^2+52x+144\)

\(\Leftrightarrow12\sqrt{x^2+16x}=135-12x\)(\(x\le\frac{135}{12}\))

\(\Leftrightarrow144\left(x^2+16x\right)=\left(135-12x\right)^2\)

\(\Leftrightarrow616x-2025=0\)

\(\Leftrightarrow x=\frac{2025}{616}\)

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる