Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
=>5x=22
hay x=22/5
b: \(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
hay \(x\in\left\{3;-\dfrac{11}{10}\right\}\)
c: \(\Leftrightarrow x^3+2x^2-5x-10+5x=2x^2+17\)
\(\Leftrightarrow x^3+2x^2-10-2x^2-17=0\)
=>x3=27
=>x=3
d: \(\Leftrightarrow x^3+1-x^3+3x=15\)
=>3x=14
hay x=14/3
2(x+5)-x2-5x=0
<=> 2(x+5)-(x2+5x)=0
<=> 2(x+5)-x(x+5)=0
<=> (x+5)(2-x)=0
<=> \(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy ...
x2+3x+2=0
<=> x2+x+2x+2=0
<=> (x2+x)+(2x+2)=0
<=> x(x+1)+2(x+1)=0
<=> (x+1)(x+2)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy ....
x2-4x-5=0
<=> x2-x+5x-5=0
<=>(x2-x)+(5x-5)=0
<=> x(x-1)+5(x-1)=0
<=> (x-1)(x+5)=0
<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy .....
1) 2. (x + 5) - x2 - 5x = 0
⇒ 2. (x + 5) - x. ( x - 5 ) = 0 ⇒ ( x - 5 ).(2 - x ) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2-x=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy x = 5 ; x= 2
2) x2 + 3x + 2 = 0 ⇒ x2 + x + 2x + 2 = 0
⇒ ( x2 + x ) + ( 2x + 2 ) = 0
⇒ x. ( x + 1 ) + 2. ( x + 1 ) = 0
⇒ ( x +1 ).(x + 2 ) = 0 ⇒ \(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy x = -1; x = -2
3) x2 - 4x -5 = 0 ⇒ x2 + x - 5x - 5 = 0
⇒ ( x2 + x ) - ( 5x + 5 ) = 0
⇒ x. ( x + 1 ) - 5. ( x + 1 ) = 0
⇒ ( x + 1 ).( x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy x = -1 ; x = 5
4) - 2x2 - 3x + 5 = 0 ⇒ -2x2 + 2x - 5x + 5 = 0
⇒ -2x. ( x - 1 ) - 5. ( x - 1 ) = 0
⇒ ( x - 1 ). ( -2x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x-1=0\\-2x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\-2x=5\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy x = 1 ; x = -\(\dfrac{5}{2}\)
a)
\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)
b)
\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)
c)
\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)
d)
\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(S=\left\{0;\frac{1}{2}\right\}\)
e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)
Do \(x^2\ge0\) Nên \(x^2+4>0\)
\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{3}{5};1\right\}\)
....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn
1. (4x - 10)(24 + 5x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}
2. (2x - 5)(3x - 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}
3. (2x - 1)(3x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}
4. x(x2 - 1) = 0
\(\Leftrightarrow\) x(x - 1)(x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy S = {0; 1; -1}
5. (5x + 3)(x2 + 4)(x - 1) = 0
VÌ x2 + 4 > 0 với mọi x nên
\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)
Vậy S = {\(\frac{-3}{5}\); 1}
6. (x - 1)(x + 2)(x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy S = {1; -2; -3}
7. (x - 1)(x + 5)(-3x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)
Vậy S = {1; -5; \(\frac{8}{3}\)}
Chúc bn học tốt!!
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
a: \(\Leftrightarrow x^4+3x^3+2x^2-2x-3x^2-2x+2=0\)
\(\Leftrightarrow x^4+3x^3-x^2-4x+2=0\)
\(\Leftrightarrow\left(x^2+x-1\right)\left(x^2+2x-2\right)=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2};-1+\sqrt{3};-1-\sqrt{3}\right\}\)
b: Đặt \(x^2-3x+5=a\)
Pt sẽ là \(\dfrac{a}{a-x}-\dfrac{a-2x}{a-3x}=\dfrac{-1}{4}\)
\(\Leftrightarrow\dfrac{a^2-3ax-\left(a^2-ax-2ax+2x^2\right)}{\left(a-x\right)\left(a-3x\right)}=\dfrac{-1}{4}\)
\(\Leftrightarrow4\left(a^2-3ax-a^2+3ax-2x^2\right)=-\left(a-x\right)\left(a-3x\right)\)
\(\Leftrightarrow4\cdot\left(-2x^2\right)=-\left(x^2-3x+5-x\right)\left(x^2-3x+5-3x\right)\)
\(\Leftrightarrow-8x^2=-\left(x^2-4x+5\right)\left(x^2-6x+5\right)\)
\(\Leftrightarrow\left(x^2-4x+5\right)\left(x^2-6x+5\right)=8x^2\)
\(\Leftrightarrow\left(x^2+5\right)^2-10x\left(x^2+5\right)+24x^2-8x^2=0\)
\(\Leftrightarrow\left(x^2+5\right)^2-10x\left(x^2+5\right)+16x^2=0\)
\(\Leftrightarrow\left(x^2-8x+5\right)=0\)
hay \(x\in\left\{4+\sqrt{11};4-\sqrt{11}\right\}\)
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
a) \(x^3-2x^2-5x+6=0\)
\(x^3-x^2-x^2+x-6x+6=0\)
\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)
\(a,x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)
\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)
Vậy \(x\in\left\{-2;1;3\right\}\)
P/S: (h) là hoặc nhé
\(a.\left(4x-3\right)^2-\left(2x+1\right)^2=0\\\Leftrightarrow \left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\\\Leftrightarrow \left(2x-4\right)\left(6x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{3}\right\}\)
\(b.\left(3x-1\right)\left(2x-5\right)=\left(3x-1\right)\left(x+2\right)\\ \Leftrightarrow\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{7;\frac{1}{3}\right\}\)
\(c.\left(x+6\right)\left(x-1\right)=2\left(x-1\right)\\ \Leftrightarrow\left(x+6\right)\left(x-1\right)-2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-4\right\}\)
\(d.\left(x-1\right)^2=4\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-1\right\}\)
\(e.3x-12=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-5x=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{4;\frac{3}{5}\right\}\)
\(f.x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-1\right\}\)