Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
a) 1
b) \(2\sqrt{x-2}+\sqrt{x+2}\)
c)câu này để bạn tự làm nhé
Bài 1:
b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)
=>16x+48=5x+7
=>11x=-41
hay x=-41/11
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)
\(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)
Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)
Vậy để \(B< -1\)thì \(9< x< 16\)
\(2B\in Z\Leftrightarrow B\in Z\)
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)
Xin lỗi vì để bài mình ghi lộn :))
Còn lại thì ổn rồi :))
\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)
\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x}\)
7/
ĐKXĐ: \(-3\le x\le\frac{2}{3}\)
\(\Leftrightarrow2x+8\sqrt{x+3}+4\sqrt{3-2x}=2\)
\(\Leftrightarrow8\sqrt{x+3}+4\sqrt{3-2x}-\left(3-2x\right)+1=0\)
\(\Leftrightarrow8\sqrt{x+3}+\sqrt{3-2x}\left(4-\sqrt{3-2x}\right)+1=0\)
Do \(x\ge-3\Rightarrow3-2x\le9\Rightarrow\sqrt{3-2x}\le3\)
\(\Rightarrow4-\sqrt{3-2x}>0\)
\(\Rightarrow VT>0\)
Phương trình vô nghiệm (bạn coi lại đề)
5/
\(\Leftrightarrow8x^2-3x+6-4x\sqrt{3x^2+x+2}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{3x^2+x+2}+3x^2+x+2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x^2+x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\sqrt{3x^2+x+2}=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow x=2\)
6/
ĐKXĐ: ....
\(\Leftrightarrow\left(x-2000-2\sqrt{x-2000}+1\right)+\left(y-2001-2\sqrt{y-2001}+1\right)+\left(z-2002-2\sqrt{z-2002}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2000}-1=0\\\sqrt{y-2001}-1=0\\\sqrt{z-2002}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2001\\y=2002\\z=2003\end{matrix}\right.\)
Bài làm:
a) đk: \(x\ge-\frac{1}{2}\)
Ta có: \(\sqrt{2x+1}< 3\)
\(\Leftrightarrow2x+1< 9\)
\(\Leftrightarrow2x< 8\)
\(\Rightarrow x< 4\)
Vậy x < 4
b) đk: \(x\ge\frac{1}{3}\)
Ta có: \(\sqrt{3x-1}=\sqrt{x+2}\)
\(\Leftrightarrow\left|3x-1\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=x+2\\3x-1=-x-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=3\\4x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{4}\left(ktm\right)\end{cases}}\)
Vậy \(x=\frac{3}{2}\)
\(\sqrt{2x+1}< 3.\) ĐK: 2x+1 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng -1/2
\(\Rightarrow\sqrt{2x+1}< \sqrt{9}\)
\(\Rightarrow2x+1< 9\)\(\Rightarrow x< 4\)
\(\Rightarrow-\frac{1}{2}\le x< 4\)
b/ \(\sqrt{3x-1}=\sqrt{x+2}\)( ĐK:x lớn hơn hoặc bằng 1/3)
\(\Rightarrow3x-1=x+2\)
\(\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\left(tm\right)\)