K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)

\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)

\(\Leftrightarrow x+\frac{103}{50}=5\)

\(\Leftrightarrow x=5-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{147}{50}\)

5 tháng 5 2019

\(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{1}{2}-\frac{2}{3}\)

\(\frac{2}{3}x-\frac{1}{3}=\frac{-1}{6}\)

\(\frac{2}{3}x=\frac{-1}{6}+\frac{1}{3}\)

\(\frac{2}{3}x=\frac{1}{6}\)

\(x=\frac{1}{6}:\frac{2}{3}\)

\(x=\frac{1}{4}\)

~ Hok tốt ~

5 tháng 5 2019

\(\frac{3}{x+5}=15\%\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{15}{100}\)

\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)

\(\Leftrightarrow x+5=20\)

\(\Leftrightarrow x=20-5\)

\(\Leftrightarrow x=15\)

6 tháng 5 2019

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

6 tháng 5 2019

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

8 tháng 5 2017

1.Tính

\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(E=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(E=\frac{1}{1}-\frac{1}{50}\)

\(E=\frac{49}{50}\)

Câu 2 mình không biết, xin lỗi nha

8 tháng 5 2017

E=1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  =1/1-1/50=49/50

21 tháng 7 2019

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2009}{2010}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010}\)

\(\Rightarrow x+1=2010\)

\(\Rightarrow x=2010-1\)

\(\Rightarrow x=2009\)

Vậy x = 2009

21 tháng 7 2019

=> 1-1/2+1/2-1/3+1/3- 1/4 +... +1/x -1/x+1 = 2009/1020

=> 1 - 1/x+1=2009/2010

=> (x+1-1)/x+1=2009/2010

=> x/x+1=2009/2010

=>x=2009

18 tháng 7 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=201\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=201\)

\(1-\frac{1}{x+1}=201\)

\(\frac{1}{x+1}=1-201\)

\(\frac{1}{x+1}=-200\)

\(\Rightarrow x+1=-\frac{1}{200}\)

\(x=-\frac{1}{200}-1\)

\(x=-\frac{201}{200}\)

Vậy \(x=-\frac{201}{200}\)