Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để biểu thức có nghĩa thì:
a) \(-7x\geq 0\Leftrightarrow x\leq 0\)
b) \(8-x\geq 0\Leftrightarrow x\leq 8\)
c) \(3x+11\geq 0\Leftrightarrow 3x\geq -11\Leftrightarrow x\geq \frac{-11}{3}\)
d) \(\frac{2x}{5}\geq 0\Leftrightarrow x\geq 0\)
e) \(-7x+5\geq 0\Leftrightarrow 5\geq 7x\Leftrightarrow x\leq \frac{5}{7}\)
f) \(\frac{1}{-2+x}\geq 0\Leftrightarrow -2+x>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
g) \(2+x^2\geq 0\) :Luôn đúng với mọi $x$ do \(x^2\geq 0\Rightarrow x^2+2\geq 2>0\)
h) \(\left\{\begin{matrix} x+7\geq 0\\ x-8\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\geq -7\\ x\geq 8\end{matrix}\right.\Rightarrow x\geq 8\)
i) \((x+2)(x-3)\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} x+2\geq 0; x-3\geq 0\\ x+2\leq 0; x-3\leq 0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq -2; x\geq 3\\ x\leq -2; x\leq 3\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq 3\\ x\leq -2\end{matrix}\right.\)
k) \(\left\{\begin{matrix} \frac{x+5}{3-x}\geq 0\\ 3-x\neq 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5\geq 0; 3-x>0\\ x+5\leq 0; 3-x< 0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x\geq -5; x<3 \\ x\leq -5; x>3(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow 3> x\geq -5\)
a: \(=\sqrt{11}-1\)
b: \(=3\sqrt{3}+1\)
c: \(=\sqrt{3}+\sqrt{2}\)
d: \(=\sqrt{3}-\sqrt{2}\)
e: \(=\sqrt{3}-1\)
g: \(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)
=> \(\sqrt{x^2-25}=\sqrt{x-5}\)
=>\(x^2-25=x-5\)
=>\(x^2-x=25-5=20\)
=>( đến đoạn này mình xin chịu )
\(a,\sqrt{16x}=8\)
=>\(16x=8^2\)
=>\(16x=64\)
=>\(x=64:16=4\)
Vậy \(x\in\left\{4\right\}\)
\(b,\sqrt{x^2}=2x-1\)
=>\(x=2x-1\)
=>\(2x-x=1\)
=>\(x=1\)
Vậy \(x\in\left\{1\right\}\)
\(c,\sqrt{9.\left(x-1\right)}=21\)
=>\(9.\left(x-1\right)=21^2=441\)
=> \(x-1=441:9=49\)
=>\(x=49+1=50\)
Vậy \(x\in\left\{50\right\}\)
\(d,\sqrt{4\left(1-x\right)^2}-6=0\)
=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)
=> \(4\left(1-x\right)^2=6^2=36\)
=>\(\left(1-x\right)^2=36:4=9\)
=>\(1-x=\sqrt{9}=3\)
=>\(x=1-3=-2\)
Vậy \(x\in\left\{-2\right\}\)
\(g,\sqrt{9\left(2-3x\right)^2}=6\)
=> \(9.\left(2-3x\right)^2=6^2=36\)
=> \(\left(2-3x\right)^2=36:9=4\)
=> \(2-3x=\sqrt{4}=2\)
=>\(3x=2-2=0\)
=>\(x=0:3=0\)
Vậy \(x\in\left\{0\right\}\)
( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )
Câu a:
ĐKXĐ:...........
\(\sqrt{x^2-x+9}=2x+1\)
\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)
Vậy.....
Câu b:
ĐKXĐ:.........
Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)
\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)
\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)
\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)
Vì \(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:
\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)
\(\Rightarrow 9(x+3)=4(5x+7)\)
\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)
Vậy..........
\(x-3\sqrt{x}+2=x-2\sqrt{x}-\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
\(2x-\sqrt{x}-3=2x+2\sqrt{x}-3\sqrt{x}-3=2\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
\(-6\sqrt{x}+5x-11=5x+5\sqrt{x}-11\sqrt{x}-11=5\sqrt{x}\left(\sqrt{x}+1\right)-11\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(5\sqrt{x}-11\right)\)
\(6y^2-5y\sqrt{x}-x=\left(y^2-x\right)+\left(5y^2-5y\sqrt{x}\right)=\left(y-\sqrt{x}\right)\left(y+\sqrt{x}\right)+5y\left(y-\sqrt{x}\right)=\left(y-\sqrt{x}\right)\left(6y+\sqrt{x}\right)\)
\(x-2\sqrt{x-1}-a^2=x-1-2\sqrt{x-1}+1-a^2=\left(\sqrt{x-1}-1\right)^2-a^2=\left(\sqrt{x-1}-1-a\right)\left(\sqrt{x-1}-1+a\right)\)
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
Bài 1:
a: =>x=144
b: \(\Leftrightarrow x\in\varnothing\)
c: \(\Leftrightarrow x=\pm\sqrt{5}\)
d: \(\Leftrightarrow x=\pm\sqrt{\dfrac{5}{2}}\)
e: \(\Leftrightarrow x=\pm\sqrt[4]{5}\)
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
\(a,\sqrt{x}=3\Leftrightarrow x=9\\ b,\sqrt{x}=6\Leftrightarrow x=36\\ c,\sqrt{x}=8\Leftrightarrow x=64\\ d,\sqrt{x}=12\Leftrightarrow x=144\\ e,2\sqrt{x}=10\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\\ f,3\sqrt{x}=21\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\\ g,\sqrt{x}=8\Leftrightarrow x=64\\ h,2+\sqrt{x}=11\Leftrightarrow\sqrt{x}=9\Leftrightarrow x=81\)
a. \(\sqrt{x}=3\)
<=> \(\left(\sqrt{\sqrt{x}}\right)^2-\left(\sqrt{3}\right)^2=0\)
<=> \(\left(\sqrt{\sqrt{x}}-\sqrt{3}\right)\left(\sqrt{\sqrt{x}}+\sqrt{3}\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt{\sqrt{x}}-\sqrt{3}=0\\\sqrt{\sqrt{x}}+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\left(Vnghiêm\right)\end{matrix}\right.\)
Vậy nghiệm của PT là S = \(\left\{9\right\}\)