\(\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\) 

b) \(\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

\(a,\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)

ĐKXĐ: \(\sqrt{x}\ge0;\sqrt{x-5}\ge0=>x\ge5\)

\(=>\left(\sqrt{x}+\sqrt{x-5}\right)^2\le\left(\sqrt{5}\right)^2\)

\(=>\left(\sqrt{x}\right)^2+2.\sqrt{x}.\sqrt{x-5}+\left(\sqrt{x-5}\right)^2\le5\)

\(=>x+2.\sqrt{x.\left(x-5\right)}+x-5\le5\)

\(=>2x+2\sqrt{x^2-5x}-5\le5=>2x+2\sqrt{x^2-5x}-10\le0\)

\(=>2\left(x+\sqrt{x^2-5x}\right)\le10=>x+\sqrt{x^2-5x}\le5\)

\(=>\sqrt{x^2-5x}\le5-x=>\left(\sqrt{x^2-5x}\right)^2\le\left(5-x\right)^2\)

\(=>x^2-5x\le25-10x+x^2=>25-10x+x^2-x^2+5x\ge0\)

\(=>25-5x\ge0=>5x\le25=>x\le5\)

Mà theo ĐKXĐ: \(x\ge5\) nên x chỉ có thể bằng 5

Vậy x=5

\(b,\frac{x+3}{x+2}<\frac{x+4}{x+5}=>\frac{\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}<\frac{\left(x+4\right)\left(x+2\right)}{\left(x+5\right)\left(x+2\right)}\) (ĐKXĐ: \(x\notin\left\{-5;-2\right\}\))

\(=>\left(x+3\right)\left(x+5\right)<\left(x+4\right)\left(x+2\right)=>x^2+8x+15\)\(<\)\(x^2+6x\)\(+8\)

\(=>x^2+6x+8-x^2-8x-15>0=>-2x-7>0=>-2x>7=>x>-\frac{7}{2}\)

\(c,3^{x^2-x-6}<1=3^0=>x^2-x-6<0\)

\(=>x^2+2x-3x-6<0=>x\left(x+2\right)-3\left(x+2\right)<0=>\left(x+2\right)\left(x-3\right)<0\)

Vì x+2 > x-3

=>x+2 > 0 và x-3 < 0

=>x > -2 và x < 3

=>-2 < x < 3

Vậy.............

30 tháng 7 2016

- Oa, Phúc giỏi vãi đái ~~~

25 tháng 11 2019

1.

a) \(x-4\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=0+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy \(x\in\left\{0;16\right\}.\)

b) \(\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|-\frac{3}{4}=\frac{1}{5}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{1}{5}+\frac{3}{4}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{19}{20}.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}-\frac{1}{20}=\frac{19}{20}\\\frac{3}{5}\sqrt{x}-\frac{1}{20}=-\frac{19}{20}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}=1\\\frac{3}{5}\sqrt{x}=-\frac{9}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1:\frac{3}{5}\\\sqrt{x}=\left(-\frac{9}{10}\right):\frac{3}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{5}{3}\\\sqrt{x}=-\frac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{25}{9}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=\frac{25}{9}.\)

Câu c) làm tương tự như câu b).

Chúc bạn học tốt!

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

15 tháng 10 2016

a) Để A thuộc Z => \(\sqrt{x}\)- 3thuộc ước của 2 => \(\sqrt{x}\)- 3 thuộc -1; -2;1;2

=> căn x = 1 hoặc 2

câu b làm tương tự

26 tháng 10 2016

a) \(3-\sqrt{x}=\)0

\(\sqrt{x}=0+3\)

\(\sqrt{x}=3\)

mà :\(\sqrt{9}=3\)

=> x = 9

26 tháng 10 2016

Thank you very much!