Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}\le x\le\left(\frac{-5}{6}+\frac{2}{\frac{1}{4}}:\frac{-3}{2}\right)\cdot\left(\frac{-7}{\frac{1}{2}}\right)\)
\(taco:\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}=\frac{-7}{6}:\frac{-1}{4}=\frac{14}{3}\)
\(\left(\frac{-5}{6}+\frac{2}{\frac{1}{4}}:\frac{-3}{2}\right)\cdot\left(\frac{-7}{\frac{1}{2}}\right)=\left(\frac{-5}{6}+\frac{-16}{3}\right)\cdot\left(-14\right)=\frac{-37}{6}\cdot\left(-14\right)=\frac{259}{3}\)
TU DO \(=>X=\frac{14}{3};\frac{15}{3};,,,;\frac{259}{3}\)
CHUC BAN HOC TOT :))
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
thiếu dấu ngoặc rồi thánh!
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\frac{13}{3}.\frac{-1}{3}\) \(\le x\le\frac{2}{3}.\frac{-11}{12}\)
\(\frac{-13}{9}\) \(\le x\le\) \(\frac{-11}{18}\)
\(\frac{-26}{18}\) \(\le\frac{18x}{18}\le\frac{-11}{18}\)
Suy ra \(-26\le18x\le-11\)
\(\rightarrow x=-1\)
Vậy x = -1
\(\frac{2}{3}\) .\(\frac{3}{4}\)\(\le\)\(\frac{x}{18}\) \(\le\)\(\frac{7}{3}\).\(\frac{1}{3}\)
\(\frac{1}{2}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{9}{18}\le\frac{x}{18}\le\frac{14}{18}\)
\(\Rightarrow x\in\){9:10;11;12;13;14}
\(\frac{2}{3}.\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(\frac{2}{3}.\left(\frac{5}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\frac{1}{3}\)
\(\frac{2}{3}.\frac{11}{12}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{14}{18}\)
Vậy \(x\in\left\{11;12;13\right\}\)
\(a,\frac{7}{8}-\frac{1}{4}.\frac{5}{2}=\frac{x}{16}\)
\(\frac{7}{8}-\frac{5}{8}=\frac{x}{16}\)
\(\frac{2}{8}=\frac{x}{16}\)
\(\frac{4}{16}=\frac{x}{16}\)
=> X=4
k nha