Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(3^x-3^{x-3}=-234\)
\(\Rightarrow3^x-3^x\cdot3^3=-234\)
\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)
\(\Rightarrow3^x\cdot\left(-26\right)=-234\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Vậy x=2
\(\Rightarrow3^x=3^2\)
b) Ta có:
\(2^{x+1}\cdot3^x-6^x=216\)
\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)
\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)
\(\Rightarrow6^x\cdot1=216\)
\(\Rightarrow6^x=6^3\)
\(\Rightarrow x=3\)
Vậy x=3
2 tim x
\(3^{^x}.2^{^x}=216\)
\(\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)+\dfrac{-1}{2}=\dfrac{3}{4}\)
a/ \(3^x.2^x=216\)
\(\Leftrightarrow\left(3.2\right)^x=216\)
\(\Leftrightarrow6^x=216\)
\(\Leftrightarrow6^x=6^3\)
\(\Leftrightarrow x=3\)
Vậy ......
b/ \(\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)+\dfrac{-1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{2}\left(x-\dfrac{1}{3}\right)=\dfrac{5}{4}\)
\(\Leftrightarrow x-\dfrac{1}{3}=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{17}{6}\)
Vậy ..
a) \(32< 2^x< 128\)
=> \(2^5< 2^x< 2^7\)
=> x = 6
b) \(2^{x-1}+4\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^{2+x}=9\cdot2^5\)
=> 9.2x-1 = 9.25
=> 2x-1 = \(\frac{9\cdot2^5}{9}=2^5\)
=> x - 1 = 5 => x = 6
c) \(9\cdot27\le3^x\le243\)
=> \(243\le3^x\le243\)
=> x = 5
d) Giống câu b)
e) \(3^{x-1}+5\cdot3^{x-2}=216\)
=> 8.3x-2 = 216
=> 3x-2 = 27
=> 3x-2 = 33
=> x - 2 = 3 => x = 5
f) 27x-3 = 9x+3
=> 27x-3 = 9x+3
=> (33)x-3 = (32)x+3
=> 33x-9 = 32x + 6
=> không thỏa mãn x vì x là phân số mà theo đề bài là số nguyên
g) x2019 = x => x2019 - x = 0 => x(x2018 - 1) = 0 => x = 0 hoặc x = 1
a)
\(2^5< 2^x< 2^7\)
\(5< x< 7\)
\(x=6\)
b)
\(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
\(2^{x-1}+2^{2+x}=9\cdot2^5\)
\(2^{x-1}\left(1+2^3\right)=9\cdot2^5\)
\(2^{x-1}\cdot9=9\cdot2^5\)
\(2^{x-1}=2^5\)
\(x-1=5\)
\(x=6\)
a)\(3^{x-1}+7.3^{x-1}=216\)
\(1.3^{x-1}+7.3^{x-1}=216\)
\(3^{x-1}.\left(1+7\right)=216\)
\(3^{x-1}.8=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(x-1=3\)
\(x=3+1\)
\(x=4\)
a)\(3^{x-1}+7.3^{x-1}=216\)
\(\left(7+1\right).3^{x-1}=216\)
\(8.3^{x-1}=216\)
\(3^{x-1}=216:8\)
\(3^{x-1}=27\)
\(3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(x=3+1\)
\(\Rightarrow x=4\)
b)\(\left(x-2\right)^8=\left(x-2\right)^{10}\)
\(\left(\pm1\right)^8=\left(\pm1\right)^{10}\)
TH1:\(x-2=1\)
\(\Rightarrow x=3\)
TH2:\(x-2=-1\)
\(\Rightarrow x=1\)
a,Theo bài ra ta có : \(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
\(\Leftrightarrow x=10;y=6\)
b, \(3^{x+2}-3^x=216\)
\(\Leftrightarrow3^x\left(3^2-1\right)=216\)
\(\Leftrightarrow3^x=\frac{216}{8}=27\Leftrightarrow3^x=3^3\Leftrightarrow x=3\)
a) vì x/2=y/3=> x/8=y/12
y/4=z/5=>y/12=z/15
từ hai cái trên nên x/8=y/12=z/15=> x^2/64=y^2/144=z^2/225 và x^2-y^2=-80
Áp dụng t/c dãy tỉ số bằng nhau ta được
x^2/64=y^2/144=z^2/225=x^2-y^2/64-144=-80/-80=1
+) x=8
+)y=12
+)z=15
cái dưới chỉ cần nhân hệ số vào và làm tương tự nhé e.
\(a,\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-80\)
Ta có : \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}\)
Mà \(x^2-y^2=-80\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{20}=\frac{x^2-y^2}{64-144}=\frac{-80}{-80}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{64}=1\\\frac{y^2}{144}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm8\\y=\pm12\end{cases}}\)
a, x/-3=-27/y
=> x.x=(-27).(-3)
=> x^2=81
=x thuộc {9;-9}
Mấy câu sau làm tương tự nhé!
a) \(\frac{x}{-3}=\frac{-27}{x}\Leftrightarrow x^2=\left(-3\right).\left(-27\right)\)
x2=81 <=> x2=92
Vậy x=9 hoặc x=-9
b) \(\frac{5}{-x}=\frac{x}{-20}\Leftrightarrow5.\left(-20\right)=x.\left(-x\right)\)
-100=-x2 <=>-(100)=-(x2)=-(52)=-(x2)
=> x=5 hoặc x=-5
c) \(\frac{-x}{3}=\frac{48}{-x}\Leftrightarrow\left(-x\right)\left(-x\right)=3.48\)
x2=144 <=>x2=122
Vậy x=12 hoặc x=-12
d) \(\frac{-2}{x}=\frac{-x}{18}\Leftrightarrow\left(-2\right).18=x.\left(-x\right)\)
-36=-x2<=>-(36)=-(x2)<=>-(62)=-(x2)
=>x=6 hoặc x-6
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
mk biết làm