Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2\frac{2}{9}x=\frac{1}{12}+\frac{1}{20}+............+\frac{1}{72}\)
=>\(\frac{20}{9}x=\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{8.9}\)
=>\(\frac{20}{9}x=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.............+\frac{1}{8}-\frac{1}{9}\)
=>\(\frac{20}{9}x=\frac{1}{3}-\frac{1}{9}\)
=>\(\frac{20}{9}x=\frac{2}{9}\)
=>x=\(\frac{1}{10}\)
b,\(\left(\frac{1}{2.3}+\frac{1}{3.4}+.............+\frac{1}{45.50}\right)x=1\)
=>\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...........+\frac{1}{45}-\frac{1}{50}\right)x=1\)
=>\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
=>\(\frac{12}{25}x=1\)
=>\(x=\frac{25}{12}\)
\(\frac{20}{9}-x=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}=\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=\frac{1}{3}-\frac{1}{9}=\frac{2}{9}\)
\(\Rightarrow\frac{20}{9}-x=\frac{2}{9}\Rightarrow x=\frac{20}{9}-\frac{2}{9}=\frac{18}{9}=2\)
Vậy x = 2.
k cho mk nha
\(2\frac{2}{9}-x=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(2\frac{2}{9}-x=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(2\frac{2}{9}-x=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(2\frac{2}{9}-x=\frac{1}{3}-\frac{1}{9}\)
\(2\frac{2}{9}-x=\frac{3}{9}-\frac{1}{9}\)
\(2\frac{2}{9}-x=\frac{2}{9}\)
\(x=2\frac{2}{9}-\frac{2}{9}\)
\(x=2\)
Vậy x = 2
2 2/9 - x = 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
20/9 - x = 1/3×4 + 1/4×5 + 1/5×6 + 1/6×7 + 1/7×8 + 1/8×9
20/9 - x = 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8 - 1/9
20/9 - x = 1/3 - 1/9
20/9 - x = 3/9 - 1/9
20/9 - x = 2/9
x = 20/9 - 2/9
x = 18/9 = 2
Vậy x = 2
ta có:$\frac{x-1}{12}+\frac{x-1}{20}+\frac{x-1}{30}+\frac{x-1}{42}+\frac{x-1}{56}+\frac{x-1}{72}=\frac{16}{9}$
=> x+1(1/12+1/20+1/30+1/42+1/56+1/72)=16/9
=> x+1.2/9=16/9
=> x+1 = (16/9):(2/9)
=> x+1 = 8
=> x = 9
thông cảm mình ko đánh được dấu ngoặc tròn
[x-1].[1/12+1/20+1/30+1/42+1/56+1/72] =16/9
[x-1].[1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9]=16/9
[x-1].[1/3-1/9]=16/9
[x-1].2/9=16/9
x-1=16/9:2/9
x-1=8
x=7
Vậy x=7
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)