K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

x2 + 1/4x = 0

<=> ( x + 1/8 )2 - 1/64 = 0

<=> ( x + 1/8 )= 1/64

<=> \(\orbr{\begin{cases}x+\frac{1}{8}=\frac{1}{8}\\x+\frac{1}{8}=-\frac{1}{8}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)

( x + 1/2 ) ( x - 1/2 ) > 0

<=> \(\orbr{\begin{cases}x_1+\frac{1}{2}>0\\x_2-\frac{1}{2}>0\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1+\frac{1}{2}< 0\\x_2-\frac{1}{2}< 0\end{cases}}\)

<=> \(\orbr{\begin{cases}x_1>-\frac{1}{2}\\x_2>\frac{1}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1< -\frac{1}{2}\\x_2< \frac{1}{2}\end{cases}}\)

<=> x > 1/2 hoặc x < - 1/2

\(\frac{x+3}{x-2}\le0\)

<=> \(\frac{x-2+5}{x-2}\le0\)

<=> 1 + \(\frac{5}{x-2}\le0\)

<=> \(\frac{5}{x-2}\le-1\)

\(\Leftrightarrow x-2\le-5\)

\(\Leftrightarrow x\le-3\)

9 tháng 10 2020

1.

a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )

9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)

=> Với \(-2< x< \frac{3}{2}\)thì tmđb

b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)

Vì x2 + 3 ≥ 3 > 0 ∀ x

nên ta chỉ cần xét x( x - 2 ) > 0

1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)

2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)

Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb

9 tháng 10 2020

2.

A = x2 + 4x = x( x + 4 )

Để A dương => A > 0

<=> x( x + 4 ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)

2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)

Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb

B = ( x - 3 )( x + 7 )

Để B dương => B > 0

<=> ( x - 3 )( x + 7 ) > 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)

2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)

Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb

C = ( 1/2 - x )( 1/3 - x )

Để C dương => C > 0

<=> ( 1/2 - x )( 1/3 - x ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)

2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)

Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

23 tháng 11 2024

a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)

b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)

c)\(x^2+x+1>x^2\ge0\)

d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)

17 tháng 4 2018

trắc nghiệm

câu 1: c

câu 2: B

câu 3: D

câu 4: A

câu 5: C

câu 6: D

tự luận

câu 1:

a)M(x) = x4 + 2x2 + 1

b) M(x) + N(x) = -4x4 + x3 + 5x2 - 2

M(x) - N(x) = 6x4 - x3 - x2 + 4

c) \(M\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1=\dfrac{25}{16}\)

15 tháng 8 2017

Giúp mjnh nhe mấy ban minh tick chobucminh

Câu 1:

Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=x^4+2x^2+1\)

\(=\left(x^2+1\right)^2\ge1\forall x\)

hay M(x) vô nghiệm(đpcm)

Câu 2:

Ta có: A(0)=5

\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)

\(\Leftrightarrow m=5\)

Ta có: A(1)=-2

\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)

\(\Leftrightarrow5+n=-2\)

hay n=-2-5=-7

Ta có: A(2)=7

\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)

\(\Leftrightarrow-9+2p=7\)

\(\Leftrightarrow2p=16\)

hay p=8

Vậy: Đa thức A(x) là 5-7x+8x(x-1)

\(=5-7x+8x^2-8x\)

\(=8x^2-15x+5\)

a,x^2-7x=0

<=>x(x-7)=0

<=>th1 x=0

th2 x-7=0=>x=7

vậy x=0 hoặc 7

24 tháng 6 2019

\(a^2-7a=0\)

\(\Rightarrow a\left(a-7\right)=0\)

\(\Rightarrow\hept{\begin{cases}a=0\\a-7=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\a=7\end{cases}}\)