Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
f, \(x^3+1=0\)
\(\left(x+1\right)\left(x^2-x+1\right)=0\)
Ta có 2 trương hợp:
(1) x + 1 = 0 => x = -1
(2) x2 - x + 1 = 0
=> \(\Delta\) = (-1)2 - 4.1.1 = 1 - 4 = -3 nhỏ hơn 0
=> Phương trình vô nghiệm.
Vậy x \(\in\) {-1}
a, \(x^2+\frac{1}{4}=x\)
\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\\ X=\frac{1}{2}\)
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
Bài 1:
\(36\left(x-5\right)^2-25\left(x-y+4\right)^2\)
\(=\left[6\left(x-5\right)\right]^2-\left[5\left(x-y+4\right)\right]^2\)
\(=\left[6\left(x-5\right)-5\left(x-y+4\right)\right]\left[6\left(x-5\right)+5\left(x-y+4\right)\right]\)
\(=\left(x+5y-50\right)\left(11x-5y-10\right)\)
Bài 2:
a) \(\left(4x-1\right)^2-4x+1=0\)
\(\left(4x-1\right)^2-\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(4x-1-1\right)=0\)
\(\left(4x-1\right)\left(4x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\left(3x\right)^2-\left(3x-1\right)^2=0\)
\(\left(3x-3x+1\right)\left(3x+3x-1\right)=0\)
\(6x-1=0\)
\(x=\frac{1}{6}\)
c) \(36x^2-25-\left(6x+5\right)\left(6x-5\right)=0\)
\(36x^2-25-36x^2+25=0\)
\(0=0\)( đúng với mọi x )
Bài 3 : xem lại đề
\(a.\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\\\Leftrightarrow x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\\ \Leftrightarrow x^2+x^2-2x^2+6x+4x=-9+4+2+7\\ \Leftrightarrow10x=4\\ \Leftrightarrow x=\frac{2}{5}\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{2}{5}\right\}\)
\(b.36x^2-4=0\\\Leftrightarrow 4\left(9x^2-1\right)=0\\ \Leftrightarrow9x^2-1=0\\\Leftrightarrow \left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
\(c.\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\\ \Leftrightarrow x^3+27-x^3+x-27=0\\\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0\right\}\)
\(d.x^2-4x+3=0\\ \Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
\(e.x\left(2x-1\right)-\left(x-2\right)\left(2x+3\right)=0\\ \Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\\ \Leftrightarrow2x^2-2x^2-x-3x+4x+6=0\\ \Leftrightarrow6=0\left(sai\right)\)
\(\Rightarrow\) Vô nghiệm
\(g.\left(x-1\right)\left(x+2\right)-x-2=0\\\Leftrightarrow x^2+x-2-x-2=0\\\Leftrightarrow x^2=0\\ \Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{0\right\}\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a. 3.(x-2)+2.(x-3)=13
x=5
b. (x+1).(2-x)-(3x+5).(x+2)=-4x2+1
x=-9/10
c.x.(5-2x)+2x.(x-1)=13
x=13/3
d. (2x+3)2-(x-1)2=0
x=-2/3
e. x2.(3x-2)-8+12=0
x vô ngiệm
f x2+x=0
x=-1
g. x3-5x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a) \(3\left(x-2\right)+2\left(x-3\right)=1\)\(3\)
\(3x-6+2x-6=13\)
\(5x=13+6+6\)
\(5x=25\)
\(x=25\)
c) \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
d) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\left(x+4\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x+4=0\\3x+2=0\end{cases}}=>\orbr{\begin{cases}x=-4\\x=\frac{-2}{3}\end{cases}}\)
f) \(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
g) \(x^3-5x=0\)
\(x^2\left(x-5\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x-5=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=5\end{cases}}\) \(\)
\(\)
a) (3x-5)2 - (x+1)2 =0
\(\Leftrightarrow\left(3x-5+x+1\right)\left[\left(3x-5\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
b) 4x3 - 36x =0
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\\x=-3\end{array}\right.\)
b) \(4x^3-36x=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=3\\x=-3\end{array}\right.\)