Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = 6x4+19x2+15
=6x4+9x2+10x2+15
=3x2(2x2+3)+5(2x2+3)
=(3x2+5)(2x2+3) Giải câu a vậy nha
\(2x^4+3x^3-9x^2-3x+2\)
\(=2x^4+5x^3-2x^2-2x^3-5x^2+2x-2x^2-5x+2\)
\(=x^2\left(2x^2+5x-2\right)-x\left(2x^2+5x-2\right)-\left(2x^2+5x-2\right)\)
\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
b/
\(x^4-3x^3-6x^2+3x+1\)
\(=x^4-4x^3-x^2+x^3-4x^2-x-x^2+4x+1\)
\(=x^2\left(x^2-4x-1\right)+x\left(x^2-4x-1\right)-\left(x^2-4x-1\right)\)
\(=\left(x^2+x-1\right)\left(x^2-4x-1\right)\)
c/
\(x^4-6x^3+12x^2-14x+3\)
\(=x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3\)
\(=x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)
\(=\left(x^2-2x+3\right)\left(x^2-4x+1\right)\)
e/
Đề sai, sao có 2 hạng tử chứa \(x^4\) thế kia?
\(\left(3x+4\right)^3=\left(9x-8\right)\left(3x^2-8\right)\)
\(27x^3+108x^2+144x+64=27x^3-72x-24x^2+64\)
\(27x^3-27x^3+108x^2+24x^2+144x+72x=64-64=0\)
\(132x^2+216x=0\)
\(x\left(132x+216\right)=0\)
\(\Rightarrow x=\hept{\begin{cases}0\\\frac{216}{132}=\frac{18}{11}\end{cases}}\)
a) <=> \(3x^4-9x^3+9x^2-27x=0\)
<=>\(3x\left(x^3-3x^2+3x-9\right)=0\)
<=>\(3x\left(x-3\right)\left(x^2+3\right)\)=0
<=>x=0 hoặc x=3
b) \(\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
<=>\(\left(x+3\right)\left(x^2-4x+5\right)=0\)
<=>\(\left(x+3\right)\left(\left(x-2\right)^2+1\right)=0\)
=> x=-3
a) 3x4 - 9x3 = -9x2 + 27x
3x4 - 9x3 + 9x2 - 27x = 0
3x(x3 - 3x2 + 3x - 9) = 0
3x[x2(x - 3) + 3(x - 3)] = 0
3x(x - 3)(x2 + 3) = 0
vì x2 + 3 > 0 nên:
3x = 0 hoặc x - 3 = 0
x = 0 : 3 x = 0 + 3
x = 0 x = 3
=> x = 0 hoặc x = 3
b) (x + 3)(x2 - 3x + 5) = x2 + 3x
x3 - 3x2 + 5x + 3x2 - 9x = x2 + 3x
x3 - 4x + 15 = x2 + 3x
x3 - 4x + 15 - x2 - 3x = 0
x3 - 7x + 15 - x2 = 0
(x2 - 4x + 5)(x + 3) = 0
vì x2 - 4x + 5 > 0 nên
x + 3 = 0
=> x = -3
Tìm x:
1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)
Vậy x = 5
2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)
\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)
\(\Leftrightarrow-4x+15=-7\)
\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)
Vậy x = \(\frac{11}{2}\)
3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6
\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)
\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)
\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)
Vậy x = -1
4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3
\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)
\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)
\(\Leftrightarrow14x=0\Leftrightarrow x=0\)
Vậy x = 0
5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)
\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27
\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)
\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)
\(\Leftrightarrow-x^3=27\)
\(\Leftrightarrow x=-3\)
Vậy x = -3
7. 3x (8x - 4) - 6x (4x - 3) = 30
\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)
\(\Leftrightarrow0=30\) ( vô lý)
Vậy pt vô nghiệm
8. 3x (5 - 2x) + 2x (3x - 5) = 20
\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)
\(\Leftrightarrow5x=20\Leftrightarrow x=4\)
Vậy x = 4