Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{19}+\frac{x+2}{18}=\frac{x+3}{17}+\frac{x+4}{16}\)
\(\Rightarrow\left(\frac{x+1}{19}+1\right)+\left(\frac{x+2}{18}+1\right)=\left(\frac{x+3}{17}+1\right)+\left(\frac{x+4}{16}+1\right)\)
\(\Rightarrow\frac{x+20}{19}+\frac{x+20}{18}=\frac{x+20}{17}+\frac{x+20}{16}\)
\(\Rightarrow\frac{x+20}{19}+\frac{x+20}{18}-\frac{x+20}{17}-\frac{x+20}{16}=0\)
\(\Rightarrow\left(x+20\right).\left(\frac{1}{19}+\frac{1}{18}-\frac{1}{17}-\frac{1}{16}\right)=0\)
Vì : \(\frac{1}{19}+\frac{1}{18}-\frac{1}{17}-\frac{1}{16}\ne0\)nên \(x+20=0\)
Suy ra : \(x=0-20=-20\)
Vậy \(x=-20\)
a. 32 = 25 => n thuộc tập 1; 2; 3; 4
b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)
\(\Rightarrow x=\frac{12}{11}\)
c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25
=> 52p+2015 chẵn
=> 20142p + q3 chẵn
Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2
=> 52p + 2015 = 20142p+8
=> 52p+2007 = 20142p
2014 có mũ dạng 2p => 20142p có dạng B6
=> 52p = B6 - 2007 = ...9 (vl)
(hihi câu này hơi sợ sai)
d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\), \(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
B1
a) \(1-\left(5\frac{3}{8}+x-7\frac{5}{24}\right):16\frac{2}{3}=0\)
\(1-\left(\frac{43}{8}+x-\frac{173}{24}\right):\frac{50}{3}=0\)
\(1-\left(x-\frac{11}{6}\right).\frac{3}{50}=0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1-0\)
\(\left(x-\frac{11}{6}\right).\frac{3}{50}=1\)
\(x-\frac{11}{6}=1:\frac{3}{50}\)
\(x-\frac{11}{6}=\frac{50}{3}\)
\(x=\frac{50}{3}+\frac{11}{6}\)
\(x=\frac{37}{2}\)
b) \(\frac{3}{5}+\frac{5}{7}:x=\frac{1}{3}\)
\(\frac{5}{7}:x=\frac{1}{3}-\frac{3}{5}\)
\(\frac{5}{7}:x=-\frac{4}{15}\)
\(x=\frac{5}{7}:\left(-\frac{4}{15}\right)\)
\(x=-\frac{75}{28}\)
c) \(\left(4\frac{1}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\left(\frac{9}{2}-\frac{2}{5}.x\right):\frac{7}{4}=\frac{11}{9}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{9}.\frac{7}{4}\)
\(\frac{9}{2}-\frac{2}{5}.x=\frac{11}{2}\)
\(\frac{2}{5}.x=\frac{9}{2}-\frac{11}{2}\)
\(\frac{2}{5}.x=-1\)
\(x=-1:\frac{2}{5}\)
\(x=-\frac{5}{2}\)
B2
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{2}{6}\right).24:5-\frac{9}{22}:\frac{15}{121}\)
\(=\left(\frac{3}{6}+\frac{2}{6}+\frac{2}{6}\right).24:5-\frac{9}{22}.\frac{121}{15}\)
\(=\frac{7}{6}.24:5-\frac{33}{10}\)
\(=28:5-\frac{33}{10}\)
\(=\frac{28}{5}-\frac{33}{10}\)
\(=\frac{56}{10}-\frac{33}{10}\)
\(=\frac{23}{10}\)
b) \(\frac{5}{14}+\frac{18}{35}+\left(1\frac{1}{4}-\frac{5}{4}\right):\left(\frac{5}{12}\right)^2\)
\(=\frac{25}{70}+\frac{36}{70}+\left(\frac{5}{4}-\frac{5}{4}\right):\frac{25}{144}\)
\(=\frac{61}{70}+0:\frac{25}{144}\)
\(=\frac{61}{70}+0\)
\(=\frac{61}{70}\)
b \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{100}\)
=> x+1 =100
=>x=99
b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)
\(\Rightarrow50.\left(x+2\right)=99\)
\(\Rightarrow x+2=\frac{99}{50}\)
\(\Rightarrow x=-\frac{1}{99}\)
d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)
Lâp bảng xét 6 trường hợp:
\(2x+1\) | \(1\) | \(6\) | \(2\) | \(3\) | \(-2\) | \(-3\) |
\(y-2\) | \(6\) | \(1\) | \(3\) | \(2\) | \(-3\) | \(-2\) |
\(x\) | \(0\) | \(\frac{5}{2}\) | \(\frac{1}{2}\) | \(1\) | \(-\frac{3}{2}\) | \(-2\) |
\(y\) | \(8\) | \(3\) | \(5\) | \(4\) | \(-1\) | \(0\) |
Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)
e) \(x^2-3xy+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)
\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)
Lại có : 1 = 1.1 = (-1) . (-1)
Lập bảng xét các trường hợp :
\(x-1\) | \(1\) | \(-1\) |
\(x-3y\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(y\) | \(\frac{1}{3}\) | \(\frac{1}{3}\) |
Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)
mik ko chép lại đề, mik làm luôn:
a) x - \(\frac{31}{36}=\frac{-13}{38}\)
x = \(\frac{-13}{18}+\frac{31}{36}\)
\(x=\frac{5}{36}\)
b)\(2-x-\frac{3}{7}=\frac{9}{-21}\)
\(\frac{11}{7}-x=\frac{3}{7}\)
x = \(\frac{11}{7}-\frac{3}{7}\)
x = 8/7
c) x + 3/11 = 23/44
x = 23/44 - 3/11
x = 1/4
d) \(\frac{1}{12}-x=\frac{-11}{9}\)
x = \(\frac{1}{12}+\frac{11}{9}\)
x = 47/36
e) \(x-\frac{2}{3}=\frac{-17}{3}\)
x= -17/3 + 2/3
x = -5
f) \(x-\frac{1}{2}=\frac{11}{4}.\frac{3}{11}\)
x - 1/2 = 3/4
x = 3/4 + 1/2
x = 5/4
g) \(2x+\frac{3}{8}=\frac{-21}{32}.\frac{4}{7}\)
2x + 3/8 = -3 / 8
2x = -3/8 - 3/8
2x = -9/8
x = -9/8.1/2
x = -9/16
h) x - \(\frac{x}{3}=\frac{3}{57}.\frac{19}{12}\)
x - \(\frac{x}{3}=\frac{1}{12}\)
x = \(\frac{1}{12}+\frac{x}{3}\)
x = \(\frac{1+4x}{12}\)
=> 12x = 1+4x
12x - 4x = 1
8x = 1
x = 1/8
a. /3x-4/=16+[1/19+18/19]
/3x-4/=16+1
/3x-4/=17
Suy ra 3x-4=17 hoặc -17
-Nếu 3x-4=17 -Nếu 3x-4=-17
3x=17+4 3x =-17+4
3x=21 3x =-13
x=21:3 x =-13:3
x=7 x =-13/3
b./2x+1/=x+2
Suy ra 2x+1=x+2 hoặc -[x+2]
-Nếu 2x+1=x+2 -Nếu 2x+1=-[x+2]
2x =x+2-1 2x+1=-x+[-2]
2x =x+1 2x =-x+[-2]-1
2x-x =1 2x-[- x]=-3
x =1 3x =-3
x =-3:3
x =-1