K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x=-\frac{13}{4}\)

\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)

29 tháng 6 2019

\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)

\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)

\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)

\(\Leftrightarrow x=-\frac{6}{11}\)

d,e,f Tương tự

20 tháng 6 2019

a) Ta có bảng bỏ dấu GTTĐ:

x  x<2   2  2<x<5 5    5<x 
|x-2|2-x0x-23x-2
|x-5|5-x35-x0x-5
Vế Trái7-2x3332x-7

+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )

+) Với x = 2 :\(3=3\)( hợp lý => Chọn )

+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )

+) Với x = 5 : \(3=3\)( hợp lý => Chọn )

+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )

Vậy \(2\le x\le5.\)

Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !



 

20 tháng 6 2019

Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.

a) \(|x-2|+|x-5|=3\left(1\right)\)

Ta có: \(x-2=0\Leftrightarrow x=2\)

               \(x-5=0\Leftrightarrow x=5\)

Lập bảng xét dấu:

x-2 x-5 2 5 0 0 - - - + + +

+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-x\right)+\left(5-x\right)=3\)

\(7-2x=3\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(\left(x-2\right)+\left(5-x\right)=3\)

\(3=3\)( luôn đúng chọn )

+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(x-2\right)+\left(x-5\right)=3\)

\(2x-7=3\)

\(2x=10\)

\(x=5\)( loại )

Vậy \(2\le x\le5\)

22 tháng 7 2018

a) |2x-3|+x=21

|2x-3|=21-x

\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)

TH1: 2x-3=21-x

2x-x=21+3

x=24

TH2: 2x-3=-(21-x)

2x-3 = -21+x

2x-x=-21+3

x=-18

Vậy x \(\varepsilon\){-18;24}