K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

a: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

=>x+1=0

hay x=-1

c: \(x^2\left(x^2+2\right)-x^2-2=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

19 tháng 7 2018

A) x3-6x2+12x-8=0

<=>(x-2)3=0

<=>x-2=0

<=>x=2

B)4(x-3)-(2x-1)(2x+1)=13

<=>4(x2-6x+9)-4x2+1=13

<=>4x2-24x+36-4x2+1=13

<=>-24x+37=13

<=>24x=37-13

<=>24x=24

<=>x=1

C)25x2-6(x+1)2=0

<=>(5x-\(\sqrt{6}\left(x+1\right)\))(5x+\(\sqrt{6}\left(x+1\right)\))=0

<=>5x-\(\sqrt{6}\left(x+1\right)\)=0 hoặc 5x+\(\sqrt{6}\left(x+1\right)\))=0

<=>5x-\(\sqrt{6}x-\sqrt{6}\)=0         <=>5x+\(\sqrt{6}x+\sqrt{6}\)=0

<=>x(5-\(\sqrt{6}\))=\(\sqrt{6}\)               <=>x(5+\(\sqrt{6}\))=\(-\sqrt{6}\)

<=>x=\(\frac{\sqrt{6}}{5-\sqrt{6}}\)                           <=>x=\(\frac{-\sqrt{6}}{5+\sqrt{6}}\)

19 tháng 7 2018

Rút gọn C=(4+2A+A^2).(4-A^2).(4-2a+a^2) GIẢI GIÚP MIK ĐI

17 tháng 9 2018

Bài 1 : 

\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)

\(\Leftrightarrow\)\(9x=16\)

\(\Leftrightarrow\)\(x=\frac{16}{9}\)

Vậy \(x=\frac{16}{9}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

a/ \(25x^2-9=0\)

<=> \(\left(5x-3\right)\left(5x+3\right)=0\)

<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

<=> \(x^2+8x+16-x^2+8x-9=16\)

<=> \(16x+7=16\)

<=> \(16x=9\)

<=> \(x=\frac{9}{16}\)

1 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)

Vậy S = {3/5 ; -3/5}

b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)

\(\Leftrightarrow9=0\left(vl\right)\)

Vậy S = \(\varnothing\)

9 tháng 6 2017

a)       9(3x - 2) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) - x(2 - 3x) = 0
\(\Leftrightarrow\)(2 - 3x)(- 9 - x) = 0
\(\Leftrightarrow\)2 - 3x = 0   hay       - 9 - x = 0
\(\Leftrightarrow\)    3x = 2      \(\Leftrightarrow\)       x = - 9
\(\Leftrightarrow\)      x = 2/3

b)       25x2 - 2 = 0
\(\Leftrightarrow\)(5x)2 - (\(\sqrt{2}\))2 = 0
\(\Leftrightarrow\)(5x - \(\sqrt{2}\))(5x + \(\sqrt{2}\)) = 0
\(\Leftrightarrow\)5x - \(\sqrt{2}\)= 0         hay             5x + \(\sqrt{2}\)= 0
\(\Leftrightarrow\)5x               = \(\sqrt{2}\)       \(\Leftrightarrow\)5x                 = -\(\sqrt{2}\)
\(\Leftrightarrow\)  x               = \(\sqrt{2}\)/5    \(\Leftrightarrow\)  x                 = -\(\sqrt{2}\)/5

c)       x2 - 25 = 6x - 9
\(\Leftrightarrow\)(x2 - 6x + 9) - 25 = 0
\(\Leftrightarrow\)(x - 3)2 - 52 = 0
\(\Leftrightarrow\)(x - 3 - 5)(x - 3 + 5) = 0
\(\Leftrightarrow\)(x - 7)(x + 2) = 0
\(\Leftrightarrow\)x - 7 = 0     hay     x + 2 = 0
\(\Leftrightarrow\)x      = 7     \(\Leftrightarrow\)x       = -2

d)       (x + 2)2 - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2) - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2 - x + 2) = 0
\(\Leftrightarrow\)(x + 2)4 = 0 (hay 4(x + 2) = 0)
\(\Leftrightarrow\)x + 2 = 0 (vì 4 \(\ne\)0)
\(\Leftrightarrow\)x       = -2

e)       x3 - 8 = (x - 2)3
\(\Leftrightarrow\)x3 - 23 = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)3 = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)(x - 2)2 = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x - 2)2] = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x2 - 4x + 4)] = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4 - x2 + 4x - 4) = 0
\(\Leftrightarrow\)(x - 2)6x = 0 (hay 6x(x - 2) = 0)
\(\Leftrightarrow\)x - 2 = 0      hay      x = 0 (vì 6\(\ne\)0)
\(\Leftrightarrow\)x      = 2

f)        x3 + 5x2 - 4x - 20 = 0
\(\Leftrightarrow\)x2(x + 5) - 4(x + 5) = 0
\(\Leftrightarrow\)(x + 5)(x2 - 4) = 0
\(\Leftrightarrow\)(x + 5)(x - 2)(x + 2) = 0
\(\Leftrightarrow\)x + 5 = 0      hay      x - 2 = 0         hay        x + 2 = 0
\(\Leftrightarrow\)x       = -5      \(\Leftrightarrow\)x      = 2            \(\Leftrightarrow\)x       = -2