Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
1) \((x-1)^2-9=0\)
\(⇔(x-1)^2-3^2=0\)
\(⇔(x-4)(x+2)=0\)
\(⇔\left[\begin{array}{} x-4=0\\ x+2=0 \end{array}\right.⇔\left[\begin{array}{} x=4\\ x=-2 \end{array}\right.\)
2) \((x-10)^2-125=x(x-15)-5\)
\(⇔x^2-20x+100-125=x^2-15x-5\)
\(⇔x^2-x^2-20x+15x=-5-100+125\)
\(⇔-5x=20⇔x=-4\)
\(3) (x+4)^2-4x=(x-3)(x+3)-11\)
\(⇔x^2+8x+16-4x=x^2-9-11\)
\(⇔x^2-x^2+8x-4x=-9-11-16\)
\(⇔4x=-36⇔x=-9\)
\(4)(2x-3)^2+12x=(4x-3)(x-2)-5\)
\(⇔4x^2-12x+9+12x=4x^2-11x+6-5\)
\(⇔4x^2-4x^2-12x+12x+11x=6-5-9\)
\(⇔11x=-8 ⇔x=-\dfrac{8}{11}\)
a) \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;3\right\}\)
b) \(\left(x+8\right)^2=121\)
\(\Leftrightarrow\left(x+8\right)^2-121=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+19\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy \(x\in\left\{-19;3\right\}\)
c) \(x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{0;2\right\}\)
d) \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)
\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)
\(=\left(x^2+4\right)\left(x+2\right)^2=0\)
Mà \(x^2\ge0\Rightarrow x^2+4>0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(x^5-18x^3+81x=0\)
\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)
\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)
\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)
\(=x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)
a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)
d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)
1: =>(4x+5):3-11=41
=>(4x+5):3=52
=>4x+5=156
=>4x=151
hay x=151/4
2: \(\Leftrightarrow2^x\cdot\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x=16\)
hay x=4