Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x + 1)2 - 4(x + 2)2 = 99
=> 4x2 + 4x + 1 - 4(x2 + 4x + 4) = 99
=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
=> -12x = 114
=> x = -9,5
b) (x - 3)2 - (x - 4)(x + 8) = 1
=> x2 - 6x + 9 - (x2 + 4x - 32) = 1
=> x2 - 6x + 9 - x2 - 4x + 32 = 1
=> -10x = -40
=> x = 4
c) 3(x + 2)2 + (2x - 1)2 - 7(x - 3)(x + 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x = -40
=> x = -5
a) ( 2x + 1 ) - 4( x + 2 )2 = 99
<=> 4x2 + 4x + 1 - 4( x2 + 4x + 4 ) = 99
<=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
<=> -12x - 15 = 99
<=> -12x = 114
<=> x = -114/12 = -19/2
b) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1
<=> x2 + 6x + 9 - x2 - 4x + 32 = 1
<=> 2x + 41 = 1
<=> 2x = -40
<=> x = -20
c) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36
<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36
<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
<=> 8x + 76 = 36
<=> 8x = -40
<=> x = -5
a)
=>x2+6x+9-x2-8x+4x+32-1=0
=>2x+40=0
=>2x=-40
=>x=-20
b ) cứ phân tích hết ra rồi rút gọn là ra
a) \(^{x^2+6x+9-x^2-8x+4x+32=1}\)
\(\Rightarrow2x+41=1\Rightarrow2x=42\Rightarrow x=21\)
a, \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x+41=1\Leftrightarrow2x+40=0\Leftrightarrow x=-20\)
b, \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x-3\right)\left(x+3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+40=0\Leftrightarrow x=-5\)
( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) - 1 = 0
<=> x2 + 6x - x2 - 4x + 32 + 8 = 0
<=> 2x + 40 = 0 <=> x = -20
a) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1
<=> x2 + 6x + 9 - x2 - 4x + 32 = 1
<=> 2x + 41 = 1
<=> 2x = -40
<=> x = -20
b) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36
<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36
<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
<=> 8x + 76 = 36
<=> 8x = -40
<=> x = -5
c) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 1
<=> x3 - 27 - x( x + 2 )( x - 2 ) = 1
<=> x3 - 27 - x( x2 - 4 ) = 1
<=> x3 - 27 - x3 + 4x = 1
<=> 4x - 27 = 1
<=> 4x = 28
<=> x = 7
a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)
\(\Leftrightarrow14x=0\)
\(\Leftrightarrow x=0\)
Vậy pt có nghiệm duy nhất x = 0.
b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)
c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)
d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)
\(\Leftrightarrow41-10x=1\)
\(\Leftrightarrow-10x=40\)
\(\Leftrightarrow x=-4\)
Vậy pt có nghiệm duy nhất x = -4.
e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)
\(\Leftrightarrow8x=-13\)
\(\Leftrightarrow x=-\frac{13}{8}\)
Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)
P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?
1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)
=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)
=> \(4x^2-28x+49-4x+12=5\)
=> \(4x^2-32x+61=5\)
=> \(4x^2-32x+61-5=0\)
=> \(4x^2-32x+56=0\)
=> \(4\left(x^2-8x+14\right)=0\)
=> \(x^2-8x+14=0\)
=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)
4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)
=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)
=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)
=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)
=> 7 = 7(đúng)
5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)
=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1
=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1
=> 2x + 41 = 1
=> 2x = -40
=> x = -20
3.(x+3)2+(2x-1)2-7(x-3)=36
=>3x2+18x+27+4x2-4x+1-7x+21=36
=>7x2+7x+49=36
=>7x2+7x+49-36=0
=>7x2+7x+13=0
\(\Rightarrow7\left(x+\frac{1}{2}\right)^2+\frac{45}{4}>0\)với mọi x ->vô nghiệm
giống mình