Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (3x +1)2 =0
3x+1 =0
x = -1/3
b) = (5x)2 -22 =0
(5x+2)(5x-2) = 0
5x+2 =0
x = -2/5
5x -2 =0
x= 2/5
xem đi rui lam tip
a) 9x2 + 6x + 1 = 0 => (3x)2 + 2 x 3x + 1 = 0 => (3x + 1)2 = 0 => 3x + 1 = 0 => x = \(\frac{-1}{3}\)
b) 25x2 = 4 => x2 = 4 : 25 => x2 = 0,16 => x = 0,4 hoặc x = -0,4
c) 8 - 125x3 = 0 => 125x3 = 8 => x3 = 8 : 125 => x3 = \(\frac{8}{125}\)=> x = \(\frac{2}{5}\)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0
Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\hept{\begin{cases}x=3\\y=1\end{cases}}}}\)
a) \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
( ĐKXĐ : \(x\ne0,x\ne-5\) )
\(B=\dfrac{\left(x^2+2x\right).x}{2x\left(x+5\right)}+\dfrac{\left(x-5\right).2\left(x+5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3+2x^2+2x^2+10x-10x-50+50-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)
\(B=\dfrac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{\left(x-1\right)\left(x+5\right)x}{2x\left(x+5\right)}\)
\(B=\dfrac{x-1}{2}\)
Câu b và c dễ vì đã có kết quả rút gọn rồi :)
x^2-2x-3=0
<=>x2+x-3x-3=0
<=>x(x+1)-3(x+1)=0
<=>(x-1)(x-3)=0
<=>x-1=0 hoặc x-3=0
<=>x=1 hoặc x=3
2x^2+5x-3=0
<=>2x2-x+6x-3=0
<=>x(2x-1)+3(2x-1)=0
<=>(2x-1)(x+3)=0
<=>2x-1=0 hoặc x+3=0
<=>x=1/2 hoặc x=-3
a. \(\left(2x-3\right)\left(x+1\right)+\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1+3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x-6=0\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}\)
b. \(\left(x-4\right)\left(3x-2\right)+x^2-16=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2\right)+\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2+x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{2}\end{matrix}\right.\)
(2x-3)(x+1)+(2x+3)(3x-7)=0
<=> (2x-3)(x+1)-(2x-3)(3x-7)=0
<=> (2x-3)(x+1-3x+7)=0
<=> (2x-3)(-2x+8)=0
<=> 2x-3=0 => x=3/2
Hoặc -2x+8=0 => x= 4
Vậy x thuộc{3/2;4}
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
2x2 -x -10 =0
<=> 2x2+4x-5x-10=0
<=>2x(x+2)-5(x+2)=0
<=>(x+2)(2x-5)=0
=>\(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\2x=5\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
vậy X =-2 hoặc x=\(\frac{5}{2}\)