Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 5x.(12x+7)-3x.(20x-5)=-150
x=-3
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
x=43/10
c. 9x2-1+(3x-1)2=0
x=1/3
d. 3x.(x-2)-(3x+2).(x-1)=7
x=-5/2
e. (2x-1)2-(2x+5).(2x-5)=20
x=3/2
f. 4x2-5=4
x=3/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
\(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow9x^2-1=15x^2+24x-5x-8\)
\(\Leftrightarrow9x^2-1=15x^2+19x-8\)
\(\Leftrightarrow9x^2-1-15x^2-19x+8=0\)
\(\Leftrightarrow-6x^2+7-19x=0\)
\(\Leftrightarrow6x^2+19x-7=0\)
\(\Leftrightarrow6x^2+21x-2x-7=0\)
\(\Leftrightarrow3x\left(2x+7\right)-\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+7=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=\frac{1}{3}\end{cases}}\)
Vậy: Phương trình có tập nghiệm là: S = {-7/2; 1/3}
a ) \(5x^2\left(2x-3\right)+\left(2x^2+3x+3\right)\left(3-2x\right)=6x^3-9x^2\)
\(\Rightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)=3x^2\left(2x-3\right)\)
\(\Rightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)-3x^2\cdot\left(2x-3\right)=0\)
\(\Rightarrow\left(5x^2-2x^2-3x-3-2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\left(3x^2-5x\right)\left(2x-3\right)=0\)
\(\Rightarrow x\left(3x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow\) +) x = 0
+) 3x - 5 = 0\(\Rightarrow x=\dfrac{5}{3}\)
+ )\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)
vậy x \(=0;x=\dfrac{3}{2};x=\dfrac{5}{3}\)
b) \(8x^3+12x^2+6x+7-3\left(2x+1\right)^2=6\)
\(\Rightarrow\left(2x\right)^3+3.2x.1+3.2x.1^2+1^2+6-3\left(2x+1\right)^2-6=0\)
\(\Rightarrow\left(2x+1\right)^3-3\left(2x+1\right)^2=0\)
\(\Rightarrow\left(2x+1\right)^2\left(2x+1-3\right)=0\)
\(\Rightarrow\left(2x+1\right)^2\left(2x-2\right)=0\Rightarrow\left(2x+1\right)^2\left(x-1\right)2=0\)
\(\Rightarrow\) +)\(\left(2x+1\right)^2=0\Rightarrow2x+1=0\Rightarrow x=\dfrac{-1}{2}\)
+) x - 1 = 0 \(\Rightarrow x=1\)
Vậy x = \(\dfrac{-1}{2}\) hoặc x = 1
Ví dụ 3: Giải phương trình : (4).
Giải: Ta có phương trình:
, phương trình này có nghiệm: .
Do vậy
,
và .
a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)
=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)
Vậy tập nghiệm của phương trình S={-2,5 ;1}
b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)
=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)
Vậy tập nghiệm của pt là S={-2;3}
1. <=> \(\left(3x+2\right)^3-\left(\left(3x\right)^3+2^3\right)=0\)
<=> \(\left(\left(3x\right)^3+2^3+3\left(3x+2\right).3x.2\right)-\left(\left(3x\right)^3+2^3\right)=0\)
<=>3 (3x + 2) . 3x.2 = 0
<=> (3x + 2 ) . x = 0
<=> x = -2/3 hoặc x = 0
2. Tương tự
1
\(\left(3x+2\right)^3-\left[\left(3x\right)^3+2^3\right]=0\)
\(\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2+3\cdot3x\cdot2^2+2^3-\left(3x\right)^3-2^3=0\)
\(54x^2+36x=0\)
\(18x\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-2}{3}\end{cases}}\)
2
\(\left(2x+1\right)^3-\left[\left(2x\right)^3-1^3\right]=0\)
\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3-\left(2x\right)^3-1^3=0\)
\(12x^2+6x=0\)
\(6x\left(2x+1\right)=0\)
\(\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
a/ => 6x3 + x2 - 2x = 0
=> x (6x2 + x - 2) = 0
=> x (6x2 + 4x - 3x - 2) = 0
=> x [ 2x (3x + 2) - (3x + 2) ] =0
=> x (3x + 2) (2x - 1) = 0
=> x = 0
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
hoặc 2x - 1 = 0 => 2x = 1 => x = 1/2
Vậy x = 0; x = -2/3 ; x = 1/2
Câu b,c,d tương tự
a)\(2x+143=557\)
\(\Leftrightarrow2x=557-143\)
\(\Leftrightarrow2x=414\)
\(\Leftrightarrow x=414\div2\)
\(\Leftrightarrow x=207\)
Vậy x = 207
\(2x^2+12x-23=-41\)
\(\Rightarrow2x^2-12x+18=0\)
\(\Rightarrow2x^2-4x-9x+18=0\)
\(\Rightarrow2x.\left(x-2\right)-9.\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right).\left(2x-9\right)=0\)
....