Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x + 1)2 - (x + 2)(x - 2) = 0
<=> (x + 1)2 - (x2 - 22) = 0
<=> x2 + 2x + 1 - x2 + 4 = 0
<=> 2x + 5 = 0
=> 2x = -5
=> x = \(-\frac{5}{2}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3-2x^2+4x+2x^2-4x+8-x^3-2x=4\)
\(\Leftrightarrow-2x+8=4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\)
Chúc bạn học giỏi
Kết bạn với mình nha
a ) \(9x^2-49=9\)
\(\Leftrightarrow9x^2=58\)
\(\Leftrightarrow x^2=29\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=29\\x=-29\end{array}\right.\)
Vậy ......................
b ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)
\(\Leftrightarrow\left(x^3+3^3\right)-x.\left(x^2-1^2\right)-27=0\)
\(\Leftrightarrow x^3+27-x^3+x-27=0\)
\(\Leftrightarrow x=0\)
c ) \(\left(x-1\right)\left(x+2\right)-x-2=0\)
\(\Leftrightarrow x^2+2x-x-2-x-2=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
Vây .....................
(2x - 3)2 = (x - 2)3 - x(3 + x2 - 10x)
4x2 - 12x + 9 = x3 - 4x2 + 4x - 2x2 + 8x - 8 - 3x - x3 + 10x2
4x2 - 12x + 9 = 4x2 + 9x - 8
-12x + 9 = 9x - 8
9 = 9x - 8 + 12x
9 = 21x - 8
9 + 8 = 21x
17 = 21x
17/21 = x
=> x = 17/21
a ) ( x2 + 2x + 5 )( x2 + 2x + 3 ) - 8
= ( x2 + 2x + 5 )[ ( x2 + 2x + 5 ) - 2 ] - 8
= ( x2 + 2x + 5 )2 - 2 . ( x2 + 2x + 5 ) + 1 - 9
= ( x2 + 2x + 5 - 1 )2 - 9
= ( x2 + 2x + 4 )2 - 33
= ( x2 + 2x + 4 - 3 )( x2 + 2x + 4 + 3 )
= ( x2 + 2x + 1 )( x2 + 2x + 7 )
b ) ( x2 + 2x )( x2 + 2x - 2 ) - 3
= ( x2 + 2x )[ ( x2 + 2x ) - 2 ] - 3
= ( x2 + 2x )2 - 2 . ( x2 + 2x ) + 1 - 4
= ( x2 + 2x - 1 )2 - 22
= ( x2 + 2x - 1 - 2 )( x2 + 2x - 1 + 2 )
= ( x2 + 2x - 3 )( x2 + 2x + 1 )
= ( x2 + 2x - 3 )( x + 1 )2
trả lời :
- \(\left(x^2+2x+5\right)\left(x^2+2x+3\right)\)
Đặt: \(x^2+2x+5=t\Rightarrow x^2+2x+3=t+2\),ta có:
\(t\left(t+2\right)-8\)
\(=t^2+2t-8\)
\(=t^2+4t-2t-8\)
\(=t\left(t+4\right)-2\left(t+4\right)\)
\(=\left(t+4\right)\left(t-2\right)\)
Thay vào cách đặt , ta có:
\(\left(x^2+2x+5+4\right)\left(x^2+2x+5-2\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+2x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+3x-x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x+3\right)\left(x-1\right)\)
- \(\left(x^2+2x\right)\left(x^2+2x-2\right)-3\)
Đặt : \(x^2+2x=t\Rightarrow\left(x^2+2x-2\right)=t-2\),ta có:
\(t\left(t-2\right)-3\)
\(=t^2-2t-3\)
\(=t^2-3t+t-3\)
\(=t\left(t-3\right)+\left(t-3\right)\)
\(=\left(t-3\right)\left(t+1\right)\)
Thay vào cách đặt, ta có:
\(\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+3x-x-3\right)\left(x+1\right)^2\)
\(=\left(x+3\right)\left(x-1\right)\left(x+1^2\right)\)
#hok tốt #
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
Ta thấy: Biểu thức trên có dạng \(\left(a+b\right)^2=a^2+2ab+b^2\)
Áp dụng vào ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(2x+1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=4x^2=\)
(2x+3)(4x2-6x+9)-x(x2+2)
=8x3-12x2+18x+12x2-18x+27-x3-2x
=8x3-x3-12x2+12x2+18x-18x-2x+27
=7x3-2x+27
\(\left(2x-2\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[\left(2x-2\right)-\left(2x-1\right)\right]\cdot\left[\left(2x-2\right)+\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x-2-2x+1\right)\cdot\left(2x-2+2x-1\right)=0\)
\(\Leftrightarrow\left(2x-2x-2+1\right)\cdot\left(2x+2x-2-1\right)=0\)
\(\Leftrightarrow\left(-1\right)\cdot\left(4x-3\right)=0\)
\(\Leftrightarrow4x-3=0\div\left(-1\right)\)
\(\Leftrightarrow4x-3=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\frac{3}{4}\)
Vậy \(x=\frac{3}{4}\)
\(\left(2x-2\right)^2-\left(2x-1\right)^2=0\)
\(\left[2x-2-\left(2x-1\right)\right]\left[2x-2+\left(2x-1\right)\right]=0\)
\(\left(2x-2-2x+1\right)\left(2x-2+2x-1\right)=0\)
\(-1\left(4x-3\right)=0\)
\(-4x+3=0\)
\(-4x=-3\)
\(x=\frac{3}{4}\)