Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(f\left(0\right)=2.0^2-10=-10\)
\(f\left(1\right)=2.1^2-10=-8\)
\(f\left(-1\frac{1}{2}\right)=f\left(\frac{-3}{2}\right)=2.\left(\frac{-3}{2}\right)^2-10=2.\frac{9}{4}-10=\frac{9}{2}-10=\frac{-11}{2}\)
b)Vì \(f\left(x\right)=2\)
\(\Rightarrow2x^2-10=-2\)
\(\Rightarrow2x^2=8\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(x=2\)hoặc \(x=-2\)
a, \(f\left(0\right)=2.0^2-10=-10\)
\(f\left(1\right)=2.1^2-10=2-10=-8\)
Ta co \(-1\frac{1}{2}=-\frac{3}{2}\)
\(f\left(-\frac{3}{2}\right)=2.\left(-\frac{3}{2}\right)^2-10=2.\frac{9}{4}-10=\frac{18}{4}-\frac{40}{4}=-\frac{22}{4}=-\frac{11}{2}\)
b, Ta co : \(f\left(x\right)=-2\)hay \(2x^2-10=-2\Leftrightarrow2x^2=8\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Bài 1:
\(a)f\left(x\right)=10x\)
\(\Leftrightarrow f\left(0\right)=10.0=0\)
\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)
\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)
\(b)\)Vì \(f\left(x\right)=10x\)
Nên: \(f\left(a+b\right)=10\left(a+b\right)\)
Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)
Do đó:
\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)
\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)
\(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
a) \(f\left(\frac{-1}{2}\right)\)
Thay x = -1/2 vào ta được: \(y=f\left(\frac{-1}{2}\right)=\left(\frac{-1}{2}\right)^2-5.\left(\frac{-1}{2}\right)+1=\frac{15}{4}\)
\(f\left(3\right)\)
Thay x = 3 vào ta được: \(y=f\left(3\right)=3^2-5.3+1=-5\)
b) Để f(x) = 1
Suy ra: \(x^2-5x+1=1\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy khi x = 0 hoặc x = 5 thì f(x) = 1
a.
| x | = 5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
Vậy \(x\in\left\{-5,6;5,6\right\}\)
b, \(\left|x-3,5\right|=5\)
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
Vậy \(x\in\left\{-1,5;8,5\right\}\)
c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)
d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)
=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)
=> \(\left|4x\right|=13,75\)
=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)
Vậy \(x\in\left\{-3,4375;3,4375\right\}\)
e, ( x - 1 ) 3 = 27
=> x - 1 = 3
=> x = 4
Vậy x = 4
f, ( 2x - 3)2 = 36
=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)
Vậy x\(\in\left\{-1,5;4,5\right\}\)
g, \(5^{x+2}=625\)
=> \(5^{x+2}=5^4\)
=> x + 2 = 4
=> x = 2
Vậy x = 2
h, ( 2x - 1)3 = -8
=> 2x - 1 = -2
=> x = \(\dfrac{-1}{2}\)
Vậy x = \(\dfrac{-1}{2}\)
i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)
=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)
=> \(\dfrac{1}{32.2^{31}}=2^x\)
=> \(\dfrac{1}{2^{36}}=2^x\)
=> x = -36
Vậy x = -36
(1)
a) x=\(\dfrac{-1}{12}-\dfrac{2}{3}\)=\(\dfrac{-3}{4}\)
b) 2x+1=3 => 2x=3-1=2 => x=1
(2)
f(2)=2.22+4=12
f(-1)=2.(-1)2+4=6
(1)
a) \(x+\dfrac{2}{3}=-\dfrac{1}{12}\\ \Rightarrow x=-\dfrac{1}{12}-\dfrac{2}{3}\\ \Rightarrow x=\dfrac{-1}{12}-\dfrac{8}{12}\\ \Rightarrow x=-\dfrac{9}{12}=-\dfrac{3}{4}\)
Vậy \(x=-\dfrac{3}{4}\)
b) \(\left(2x+1\right)^2=9\\ \Rightarrow\left(2x+1\right)^2=3^2=\left(-3\right)^2\\ \Rightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=2\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-2;1\right\}\)
(2)
\(y=f\left(x\right)=2x^2+4\\ f\left(2\right)=2\cdot2^2+4=8+4=12\\ f\left(-1\right)=2\cdot\left(-1\right)^2+4=2+4=6\)
Vậy \(f\left(2\right)=12\\ f\left(-1\right)=6\)