K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

mk sửa đề 1 chút

\(x^6-x^5+3x^4-16x^2+16x-48=0\)

\(\Leftrightarrow\left(x^6-16x^2\right)-\left(x^5-16x\right)+\left(3x^4-48\right)=0\)

\(\Leftrightarrow x^2\left(x^4-16\right)-x\left(x^4-16\right)+3\left(x^4-16\right)=0\)

\(\Leftrightarrow\left(x^4-16\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x^2+4>0\\x^2-x+3=0\left(vonghiem\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy.............

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

28 tháng 4 2018

a) 5 - 4x = 3x - 9

\(\Leftrightarrow5-4x-3x+9=0\)

\(\Leftrightarrow14-7x=0\)

\(\Leftrightarrow7x=14\Leftrightarrow x=2\)

Vậy \(S=\left\{2\right\}\)

b) \(\left(x-4\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-3;4\right\}\)

c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)

ĐKXĐ: \(x\ne\pm4\)

\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)

\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

d) \(4-2x=7-x\)

\(\Leftrightarrow4-2x-7+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

e) \(\left(x+4\right) \left(8-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-4;2\right\}\)

f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)

ĐKXĐ: \(x\ne\pm5\)

\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)

\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)

\(\Leftrightarrow9x+6-3x-1-10-12x=0\)

\(\Leftrightarrow-6x-5=0\)

\(\Leftrightarrow-6x=5\)

\(\Leftrightarrow x=-\dfrac{5}{6}\)

Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)

h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)

\(\Leftrightarrow2x-3+5x-4x-12=0\)

\(\Leftrightarrow3x-15=0\)

\(\Leftrightarrow x=5\)

Vậy \(S=\left\{5\right\}\)

i) \(3x-6+x=9-x\)

\(\Leftrightarrow3x-6+x-9+x=0\)

\(\Leftrightarrow5x-15=0\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

k)\(2t-3+5t=4t+12\)

\(\Leftrightarrow2t-3+5t-4t-12=0\)

\(\Leftrightarrow3t-15=0\)

\(\Leftrightarrow t=5\)

Vậy \(S=\left\{5\right\}\)

28 tháng 4 2018

c.ơn bạn

22 tháng 1 2019

a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)

b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x\left(x-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;4\right\}\)

c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)

\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)

d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)

e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)

g. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

16 tháng 10 2020

Bài 1 : 

a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)

\(=x^2+6x+9+x^2-6x+9+2x^2-18\)

\(=4x^2\)

b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)

16 tháng 10 2020

Bài 2 : 

a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)

b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)

c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)

30 tháng 8 2020

a) Ta có: \(x^3-3x^2-16x+48=0\)

\(\Leftrightarrow x^2\left(x-3\right)-16\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm4\end{cases}}\)

b) Ta có: \(10x^2-33x-7=0\)

\(\Leftrightarrow\left(10x^2-35x\right)+\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{5}\end{cases}}\)

30 tháng 8 2020

x3 - 3x2 - 16x + 48 = 0

<=> ( x3 - 3x2 ) - ( 16x - 48 ) = 0

<=> x2( x - 3 ) - 16( x - 3 ) = 0

<=> ( x - 3 )( x2 - 16 ) = 0

<=> ( x - 3 )( x - 4 )( x + 4 ) = 0

<=> x = 3 hoặc x = 4 hoặc x = -4

10x2 - 33x - 7 = 0

<=> 10x2 + 2x - 35x - 7 = 0

<=> ( 10x2 + 2x ) - ( 35x + 7 ) = 0

<=> 2x( 5x + 1 ) - 7( 5x + 1 ) = 0

<=> ( 5x + 1 )( 2x - 7 ) = 0

<=> \(\orbr{\begin{cases}5x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{7}{2}\end{cases}}\)