Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)/99+(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95+(x+6)/94
[(x+1)/99 +1]+[(x+2)/98 +1]+[(x+3)/97 +1]-3=[(x+4)/96 +1]+[(x+5)/95 +1]+[(x+6)/94 +1]-3
[(x+1+99)/99+(x+2+98)/98+(x+3+97)/97]-3=[(x+4+96)/96+(x+5+95)/95+(x+6+94)/94]-3
(x+100)/99+(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95+(x+100)/94
(x+100)(1/99+1/98+1/97)=(x+100)(1/96+1/95+1/94)
(x+100)(1/99+1/98+1/97)-(x+100)(1/96+1/95+1/94)=0
(x+100)(1/99+1/98+1/97-1/96-1/95-1/94)=0
Ma : 1/99+1/98+1/97-1/96-1/95-1/94 \(\ne\)0
=>x+100=0
=>x=-100
k mk nha khong hieu noi mk nha.
1/3x-1/2=(3/5-4x)15/7
1/3x-1/2=9/7-60/7x
1/3x+60/7x=1/2+9/7
187/21x=25/14
x=75/374
k mk nha ban.
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}+\frac{x+6}{94}\)
\(\Leftrightarrow\)\(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+\frac{x+6}{94}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}+\frac{x+100}{94}\)
\(\Leftrightarrow\)(x+100)(\(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\))=0
\(\Leftrightarrow\)x+100=0(vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\))
\(\Leftrightarrow\)x=-100
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}+\frac{x+6}{94}\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}+\frac{x+100}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}-\frac{x+100}{94}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy \(x=-100\)
\(\Leftrightarrow\frac{x+8}{92}+1+\frac{x+7}{93}+1+\frac{x+6}{94}+1\ge\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Leftrightarrow\frac{x+100}{92}+\frac{x+100}{93}+\frac{x+100}{94}\ge\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{92}-\frac{1}{98}+\frac{1}{93}-\frac{1}{97}+\frac{1}{94}-\frac{1}{96}\right)\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{6}{92.98}+\frac{4}{93.97}+\frac{2}{94.96}\right)\ge0\)
\(\Leftrightarrow x+100\ge0\Rightarrow x\ge-100\)
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
\(\Leftrightarrow\frac{108-x}{92}+1+\frac{107-x}{93}+1+\frac{106-x}{94}+1+\frac{105-x}{95}=0.\)
\(\Leftrightarrow\frac{108+92-x}{92}+\frac{107+93-x}{93}+\frac{106+94-x}{94}+\frac{105+95-x}{95}=0\)
\(\Leftrightarrow\frac{200-x}{92}+\frac{200-x}{93}+\frac{200-x}{94}+\frac{200-x}{95}=0\)
\(\Leftrightarrow\left(200-x\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}200-x=0\Leftrightarrow x=200\\\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\ne0\end{cases}}\)
Vậy nghiệm của phương trình là 200
Ta có :
\(\frac{108-x}{92}+\frac{107-x}{93}+\frac{106-x}{94}+\frac{105-x}{95}+4=0\)
\(\Leftrightarrow\)\(\left(\frac{108-x}{92}+1\right)+\left(\frac{107-x}{93}+1\right)+\left(\frac{106-x}{94}+1\right)+\left(\frac{105-x}{95}+1\right)+\left(4-4\right)=0\)
\(\Leftrightarrow\)\(\frac{200-x}{92}+\frac{200-x}{93}+\frac{200-x}{94}+\frac{200-x}{95}=0\)
\(\Leftrightarrow\)\(\left(200-x\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)
Vì \(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\ne0\)
\(\Rightarrow\)\(200-x=0\)
\(\Rightarrow\)\(x=200\)
Vậy \(x=200\)
Chúc bạn học tốt ~
b. \(\Leftrightarrow\frac{x-1}{99}-1+\frac{x-3}{97}-1+\frac{x-5}{95}-1< \frac{x-2}{98}-1+\frac{x-4}{96}-1+\frac{x-6}{94}-1\)
\(\Leftrightarrow\frac{x-100}{99}+\frac{x-100}{97}+\frac{x-100}{95}-\frac{x-100}{98}-\frac{x-100}{96}-\frac{x-100}{94}< 0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\right)< 0\)
Vì \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\right)< 0\)
Nên \(x-100< 0\Leftrightarrow x< 100\)
P/S: Bài a có sai đề ko bn
Mình nhầm
Vì \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\right)< 0\)
Nên \(\left(x-100\right)>0\Leftrightarrow x>100\)
Ta có :
\(\frac{x-99-1}{99}-\frac{x-99-1}{98}-\frac{x-99-1}{97}-\frac{x-99-1}{96}-\frac{x-99-1}{95}-\frac{x-99-1}{94}=0\)
\(\Leftrightarrow\)\(\frac{x-100}{99}-\frac{x-100}{98}-\frac{x-100}{97}-\frac{x-100}{96}-\frac{x-100}{95}-\frac{x-100}{94}=0\)
\(\Leftrightarrow\)\(\left(x-100\right)\left(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\right)=0\)
Vì \(\frac{1}{99}-\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\)
Nên \(x-100=0\)
\(\Rightarrow\)\(x=100\)
Vậy \(x=100\)
Bài làm mang tính chất tham khảo vì em mới lớp 7 ~
\(\frac{x+1}{96}+\frac{x+2}{95}=\frac{x+3}{94}+\frac{x+4}{93}\)
\(\Rightarrow\left(\frac{x+1}{96}+1\right)+\left(\frac{x+2}{95}+1\right)=\left(\frac{x+3}{94}+1\right)+\left(\frac{x+4}{93}+1\right)\)
\(\Rightarrow\frac{x+97}{96}+\frac{x+97}{95}=\frac{x+97}{94}+\frac{x+97}{93}\)
\(\Rightarrow\frac{x+97}{96}+\frac{x+97}{95}-\frac{x+97}{94}-\frac{x+97}{93}=0\)
\(\Rightarrow\left(x+97\right)\left(\frac{1}{96}+\frac{1}{95}-\frac{1}{94}-\frac{1}{93}\right)=0\)
Mà \(\frac{1}{96}+\frac{1}{95}-\frac{1}{94}-\frac{1}{93}\ne0\)
\(\Rightarrow x+97=0\)
\(\Rightarrow x=-97\)
Vậy x = -97
Có : \(\frac{x+1}{96}+\frac{x+2}{95}=\frac{x+3}{94}+\frac{x+4}{93}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{96}+1\right)+\left(\frac{x+2}{95}+1\right)\)= \(\left(\frac{x+3}{94}+1\right)+\left(\frac{x+4}{93}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+97}{96}+\frac{x+97}{95}=\frac{x+97}{94}+\frac{x+97}{93}\)
\(\Leftrightarrow\) \(\frac{x+97}{96}+\frac{x+97}{95}-\frac{x+97}{94}-\frac{x+97}{93}=0\)
\(\Leftrightarrow\) \(\left(x+97\right)\left(\frac{1}{96}+\frac{1}{95}-\frac{1}{94}-\frac{1}{93}\right)=0\)
\(\Leftrightarrow\) \(\left(x+97\right)=0\) ( \(\frac{1}{96}+\frac{1}{95}-\frac{1}{94}-\frac{1}{93}\)) \(\ne0\)
\(\Leftrightarrow\)\(x=-97\)
Vậy \(x=-97\)