K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}=\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\)

\(\Rightarrow\left(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}\right)-\left(\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\right)=0\)

\(\Rightarrow\dfrac{x+3}{2007}-\dfrac{x+3}{2008}-\dfrac{x+3}{2010}+\dfrac{x+3}{2009}=0\)

\(\left(x+3\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\right)=0\)

\(x+3=0\Rightarrow x=-3\)

\(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}=\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\\ \dfrac{x+3}{2007}-\dfrac{x+3}{2008}-\dfrac{x+3}{2010}+\dfrac{x+3}{2009}=0\\ \left(x+3\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\right)=0\\ \Rightarrow x+3=0\Rightarrow x=-3\)

8 tháng 8 2018

\(\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}+\dfrac{x+5}{2007}+\dfrac{x+2007}{5}=-5\)

Ta có:

\(\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1+\dfrac{x+5}{2007}+1+\dfrac{x+2007}{5}+1=0\)

\(=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}+\dfrac{x+2012}{2007}+\dfrac{x+2012}{5}=0\)

\(=\left(x+2012\right)\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\right)=0\)

\(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\ne0\)

\(\Rightarrow x+2012=0\Rightarrow x=-2012\)

Vậy \(x=-2012\)

Chúc bạn học tốt!

\(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

25 tháng 7 2017

\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\)

\(\Rightarrow\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1=0\)

\(\Rightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\)

\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\ne0\)

\(\Rightarrow x+2012=0\Rightarrow x=-2012\)

Vậy x = -2012

25 tháng 7 2017

Cảm ơn bạn nha

17 tháng 3 2018

2, ta thấy:

\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)

\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)

từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)

30 tháng 4 2017

Bài 1:

a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)

\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)

\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)

\(x=\dfrac{7}{20}:\dfrac{2}{5}\)

\(x=\dfrac{7}{8}\)

Vậy \(x=\dfrac{7}{8}\).

b) \(\dfrac{3}{5}=\dfrac{24}{x}\)

\(x=\dfrac{5\cdot24}{3}\)

\(x=40\)

Vậy \(x=40\).

c) \(\left(2x-3\right)^2=16\)

\(\left(2x-3\right)^2=4^2\)

\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)

\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)

Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).

Bài 2:

a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)

\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)

\(=\dfrac{5-88+5}{20}\)

\(=\dfrac{78}{20}=\dfrac{39}{10}\)

b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\)

Bài 3:

a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)

\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)

\(=\dfrac{-3}{7}\cdot1\)

\(=\dfrac{-3}{7}\)

b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)

\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)

\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)

\(=4-\dfrac{11}{4}\)

\(=\dfrac{16}{4}-\dfrac{11}{4}\)

\(\dfrac{5}{4}\)

Bài 4:

\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)

\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)

\(=2\cdot\dfrac{1}{15}\)

\(=\dfrac{2}{15}\)

2 tháng 4 2018

x có nghĩa là nhân nha

18 tháng 6 2018

Câu đầu sai đề nhé! Phải là 2007 chứ ko phải 20007!

\(A=\dfrac{1}{2}\cdot\dfrac{1}{7}+\dfrac{1}{7}\cdot\dfrac{1}{12}+...+\dfrac{1}{2002}\cdot\dfrac{1}{2007}\\ =\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+...+\dfrac{1}{2002\cdot2007}\\ =\dfrac{1}{5}\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+...+\dfrac{5}{2002+2007}\right)\\ =\dfrac{1}{5}\cdot\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{2002}-\dfrac{1}{2007}\right)\\ =\dfrac{1}{5}\left(\dfrac{1}{2}-\dfrac{1}{2007}\right)\\ =\dfrac{1}{5}\cdot\dfrac{2005}{4014}\\ =\dfrac{401}{4014}\)

\(B=\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)...\left(1+\dfrac{1}{2007}\right)\\B=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\cdot\cdot\dfrac{2008}{2007}\\ B=\dfrac{3\cdot4\cdot...\cdot2008}{2\cdot3\cdot...\cdot2007}\\ B=\dfrac{2008}{2}\\ B=1004 \)

\(C=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2008}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2007}{2008}\\ =\dfrac{1\cdot2\cdot...\cdot2007}{2\cdot3\cdot...\cdot2008}\\ =\dfrac{1}{2008}\)