K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Giải :

a,Ta có :

\(8=2^3\\ 2^9.2^{-5}=2^4\)

\(\Rightarrow2^3< 2^x< 2^4\)

\(\Rightarrow3< x< 4\left(x\in R\right)\)

b, Ta có :

\(27=3^3\\ 81^3:3^x=3^{12}:3^x=3^{12-x}\\ 243=3^5\)

\(\Rightarrow3^3< 3^{12-x}< 3^5\)

\(\Rightarrow3< 12-x< 5\)

\(\Rightarrow7< x< 9\left(x\in R\right)\)

NV
20 tháng 5 2019

\(M=2\sqrt{3^2.3}-6\frac{\sqrt{2^2.3}}{3}+\frac{3}{5}\sqrt{5^2.3}\)

\(M=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)

\(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{x-1}.\frac{\left|x-1\right|}{2x}=\frac{-2\left(x-1\right)}{\left(x-1\right).2x}=-\frac{1}{x}\)

1 tháng 5 2019

khocroiAnh hai nhanh tay hơn em nghĩ đó. Em làm xong rùi, chụp ảnh đang định gửi lên thì thấy tên anh đập ngay vào mắt. Haiz, thất vọng não nề!!

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

20 tháng 5 2019

a)\(\)https://www.cymath.com/answer?q=2sqrt(27)-6sqrt(4%2F3)%2B3%2F5sqrt(75)

20 tháng 5 2019

\(M=2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}=2\sqrt{3^2.3}-6\sqrt{\frac{2^2.3}{3^2}}+\frac{3}{5}\sqrt{5^2.3}=.\) 

        \(=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)  

\(P=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}.Với...0< x< 1\Leftrightarrow\)  \(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{(x-1)}.\frac{\left(1-x\right)}{2x}=\frac{-1}{x}.\)