Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)
\(9x^5-18x^4-16x+32=0\)
\(\left(9x^5-18x^4\right)-\left(16x-32\right)=0\)
\(9x^4\left(x-2\right)-16\left(x-2\right)=0\)
\(\left(x-2\right)\left(9x^4-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\9x^4-16=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\9x^4=16\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x^4=\frac{16}{9}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\\left(x^2\right)^2=\left(\frac{\pm4}{3}\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{4}{3}}\end{cases}}\)
Vậy,..........
a) \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)
Vì: \(x^2+10>0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b) \(x^2\left(x-1\right)+9x^2-18x+9=0\)
\(\Leftrightarrow x^2\left(x-1\right)+\left(3x-3\right)^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)+9\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+9x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+9x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+9x+\frac{81}{4}-\frac{117}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x+\frac{9}{2}\right)^2=\frac{117}{4}\end{cases}}\)
\(\left(x+\frac{9}{2}\right)^2=\frac{117}{4}\Rightarrow\orbr{\begin{cases}x=-\sqrt{\frac{117}{4}}-\frac{9}{2}\\x=\sqrt{\frac{117}{4}}-\frac{9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3\sqrt{13}-9}{2}\\x=-\frac{9+3\sqrt{13}}{2}\end{cases}}\)
Vậy: ....
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
(9x2-18x+9)+(y2-6y+9)+2(z2+2z+1)=0\(\Rightarrow\)(3x-3)2+(y-3)2+2(z+1)2=0\(\Rightarrow\hept{\begin{cases}\left(3x-3\right)^2=0\\\left(y-3\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
vậy......
Ta có: \(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
9x^2-18x+9-1=0
(9x^2-18x+9)-1^2=0
(3x-3)^2-1^2=0
((3x-3)-1)((3x-3)+1)=0
(3x-3-1)(3x-3+1)=0
(3x-4)(3x-2)=0
3x-4=0 hoặc 3x-2=0
3x=4 3x=2
x=4/3 x=2/3