Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x-5)2 - (x+1)2 =0
\(\Leftrightarrow\left(3x-5+x+1\right)\left[\left(3x-5\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
b) 4x3 - 36x =0
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\\x=-3\end{array}\right.\)
a) \(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
Vậy \(x=5\)hoặc \(x=2\)
b) \(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x=-7\\6x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{7}{6}\end{cases}}\)
Vậy \(x=\frac{-7}{6}\)hoặc \(x=\frac{7}{6}\)
a, x2-7x+10=0
<=> x2-2x-5x+10=0
<=> x.(x-2)-5.(x-2)=0
<=> (x-2).(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
b, 36x2-49=0
<=> (6x)2-72=0
<=> (6x-7).(6x+7)=0
\(\Leftrightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{7}{6}\end{cases}}\)
\(36x^2-9y^2-12x-6y\)
\(=\left(36x^2-12x+1\right)-\left(9y^2+6y+1\right)\)
\(=\left(6x-1\right)^2-\left(9y+1\right)\)
\(=\left(6x+9y\right)\left(6x-3y-2\right)\)
\(=3\left(2x+3y\right)\left(6x-3y-2\right)\)
x3 - 2x2 - 8x = 0
⇔ x( x2 - 2x - 8 ) = 0
⇔ x( x2 - 4x + 2x - 8 ) = 0
⇔ x[ x( x - 4 ) + 2( x - 4 ) ] = 0
⇔ x( x - 4 )( x + 2 ) = 0
⇔ x = 0 hoặc x - 4 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = 4 hoặc x = -2
x( x - 1 ) - x2 + 2x = 5
⇔ x2 - x - x2 + 2x = 5
⇔ x = 5
4x3 - 36x = 0
⇔ 4x( x2 - 9 ) = 0
⇔ 4x( x - 3 )( x + 3 ) = 0
⇔ 4x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 0 hoặc x = 3 hoặc x = -3
2x2 - 2x = ( x - 1 )2
⇔ 2x( x - 1 ) - ( x - 1 )2 = 0
⇔ ( x - 1 )( 2x - x + 1 ) = 0
⇔ ( x - 1 )( x + 1 ) = 0
⇔ x - 1 = 0 hoặc x + 1 = 0
⇔ x = 1 hoặc x = -1
( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72
⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0
⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0
Đặt t = x2 - 9x + 17
⇔ ( t - 3 )( t + 3 ) - 72 = 0
⇔ t2 - 9 - 72 = 0
⇔ t2 - 81 = 0
⇔ ( t - 9 )( t + 9 ) = 0
⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0
⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0
⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0
⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0
⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0
⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0
⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]
\(x^3-2x^2-8x=x\left(x^2-2x-8\right)=x\left(x^2-4x+2x-8\right)=x\left[x\left(x-4\right)+2\left(x-4\right)\right]\)
\(=x\left(x+2\right)\left(x-4\right)\)
\(x\left(x-1\right)-x^2+2x=x^2-x-x^2+2x=x=5\)
\(4x^3-36x=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\Leftrightarrow x=0\text{ hoặc }x=3\text{ hoặc }x=-3\)
\(2x^2-2x=x^2-2x+1\Leftrightarrow x^2=1\Leftrightarrow x=-1\text{ hoặc }1\)
\(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
đến đây đặt x^2-9x+14=a r giải như thường
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................