Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\sqrt{x^2+2012}=2012.\)
\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)
Đến đây chia 2 TH ra là ok
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\left(1\right)\\x^2+z^2-4\left(y+z\right)+8=0\left(2\right)\end{cases}}\)
Ta có:(1) \(\Leftrightarrow\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)\left(\sqrt{y^2+2012}-y\right)\)\(=2012\left(\sqrt{y^2+2012}-y\right)\)(Do \(\sqrt{y^2+2012}-y\ne0\forall y\))
\(\Leftrightarrow2012\left(x+\sqrt{x^2+2012}\right)=2012\left(\sqrt{y^2+2012}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y\)\(\Leftrightarrow x+y=\sqrt{y^2+2012}-\sqrt{x^2+2012}\)
\(\Leftrightarrow x+y=\)\(\frac{\left(\sqrt{y^2+2012}+\sqrt{x^2+2012}\right)\left(\sqrt{y^2+2012}-\sqrt{x^2+2012}\right)}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)
\(\Leftrightarrow x+y=\frac{y^2-x^2}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}=0\)
Do \(\hept{\begin{cases}\sqrt{y^2+2012}>\sqrt{y^2}=\left|y\right|\ge y\forall y\\\sqrt{x^2+2012}>\sqrt{x^2}=\left|x\right|\ge-x\forall x\end{cases}}\)\(\Rightarrow\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x>0\forall x,y\Rightarrow x+y=0\)
\(\Rightarrow y=-x\)
Thay y = -x vào (2), ta được: \(x^2+z^2+4x-4z+8=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(z-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=-2\\z=2\end{cases}}\Rightarrow y=-x=2\)
Vậy hệ có nghiệm \(\left(x;y;z\right)=\left(-2;2;2\right)\)
\(\sqrt{x+2012}=2012-x^2\)
Bình phương hai vế ta được :
\(x+2012=x^4-4024x^2+2012^2\)
<=> \(x^4-4024x^2-x+2012.2011=0\)
<=> \(\left(x^2-x-2012\right)\left(x^2+x-2011\right)=0\)
Bạn lớp 9 nên chắc học công thức nghiệm rồi nhỉ, tự giải tiếp nha :D