Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^3-6x^2+10x-4=0\)
<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
<=> \(\left(x-2\right)\left(x^2-4x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)
Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)
=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
1) Ta có: \(x^3-6x^2+10x-4=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)
+ \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
+ \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=2\)
\(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,5858;2;3,4142\right\}\)
a) \(13-\sqrt{\left(8x-1\right)^2}=\sqrt{x^2}\) (*)
\(\Leftrightarrow13-\left|8x-1\right|=\left|x\right|\)
Th1: \(8x-1\ge0\Leftrightarrow x\ge\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(N\right)\)
Th2: \(x\le0\)
(*) \(\Leftrightarrow13+8x-1=-x\Leftrightarrow9x=-12\Leftrightarrow x=-\dfrac{4}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}8x-1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow\dfrac{1}{8}\le x\le0\) (vô lý)
Th4: \(\left\{{}\begin{matrix}8x-1\le0\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\dfrac{1}{8}\)
(*) \(\Leftrightarrow13-8x+1=x\Leftrightarrow9x=14\Leftrightarrow x=\dfrac{14}{9}\left(L\right)\)
Kl: x= 14/9 , x= -4/3
b) \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(2x+3\right)^2}=3\Leftrightarrow\left|x+1\right|+\left|2x+3\right|=3\)(*)
Th1: \(x\ge-1\)
(*) \(\Leftrightarrow x+1+2x+3=3\Leftrightarrow3x=-1\Leftrightarrow x=-\dfrac{1}{3}\left(N\right)\)
Th2: \(x\le-\dfrac{3}{2}\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(N\right)\)
Th3: \(\left\{{}\begin{matrix}x+1\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow-1\le x\le-\dfrac{3}{2}\) (vô lý)
Th4: \(\left\{{}\begin{matrix}x+1\le0\\2x+3\ge0\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}\le x\le-1\)
(*) \(\Leftrightarrow-x-1-2x-3=3\Leftrightarrow-3x=7\Leftrightarrow x=-\dfrac{7}{3}\left(L\right)\)
Kl: x= -1/3 , x= -7/3
\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{\left(\sqrt{8}-\sqrt{3}\right)\left(\sqrt{8}+\sqrt{3}\right)}\)
\(=\sqrt{3}+1+\sqrt{3}-1+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{5}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{5}\)
\(=2\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{8}+\sqrt{3}\)
\(=4\sqrt{3}\)
Giải pt:
1/ \(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\Rightarrow x=3\)
2/ \(\Leftrightarrow\sqrt{3}x^2=\sqrt{12}\Leftrightarrow x^2=\sqrt{4}=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
3/ \(\Leftrightarrow x-5=9\Rightarrow x=14\)
4/ Đề thiếu
5/ \(\Leftrightarrow\left|x-3\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
6/ \(\Leftrightarrow2\left|1-x\right|=6\)
\(\Leftrightarrow\left|1-x\right|=3\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
7/ \(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow x-1=49\Rightarrow x=50\)
8/ \(\Leftrightarrow x+1=2^3=8\)
\(\Rightarrow x=7\)
9/ \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)
10/ \(\Leftrightarrow\sqrt{2}x=\sqrt{50}\Leftrightarrow x=\sqrt{25}\Rightarrow x=5\)
11/ \(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
12/ \(\Leftrightarrow3-2x=\left(-2\right)^3=-8\)
\(\Leftrightarrow2x=11\Rightarrow x=\frac{11}{2}\)
Bài 1
a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a
b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3
Bài 2
a) √2x-3 = 7
⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26
c) √16x - √9x = 2
⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4
Bài 3
a) √(2-√5)2 = l 2-√5 l = √5-2
b) (a - 3)2 + (a - 9)
= a2 - 6a + 9 + a - 9 = a2 - 5a
c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\dfrac{-3\sqrt{x}+9}{x-9}\)
b)\(\sqrt{25x^2}=19\)
\(\Leftrightarrow5x=19\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
c)\(\sqrt{x-7}+3=0\)
\(\Leftrightarrow\sqrt{x-7}=-3\)
\(\Leftrightarrow x-7=9\)
\(\Leftrightarrow x=16\)
Ta có \(a,\sqrt{9(x-1)}=21 \)
<=> \(3\sqrt{x-1}=21 \)
<=> \(\sqrt{x-1}=7 \)
<=>\(x-1=49\)
<=>x=50
b, \(\sqrt{4(x-1)^2}-6=0 \)
<=>\(2|x-1|-6=0\)
<=>\(|x-1|=3\)
<=>x=4 hoặc x=-2
c,\(\sqrt{(x-5)^2}=8 \)
<=>|x-5|=8
<=>x=-3 hoặc x=13
d,\(\sqrt{(2x-1)^2}=3 \)
<=>|2x-1|=3
=> x=2 hoặc x=-1
e, \(\sqrt{(2x+3)^2}=3 \)
<=>|2x+3|=3
=>x=0 hoặc x=-3
f, \(\sqrt{x^2-4x+4}=2x-3 \)
<=>\(\sqrt{(x-2)^2}=2x-3 \)
<=>|x-2|=2x-3
Với x-2=2x-3
=>x-1=0
<=>x=1
Với 2-x=2x-3
=>x=\(\frac{5}{3}\)