Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)
Theo bài ra , ta có :
( x-2 )2 - ( x-3 )( x+3 ) = 0
=) x2-2x+1 - x2 + 9 = 0
=) -2x + 10 = 0
=) -2x = -10
=) x = 5
Vậy x = 5
b) 4(x-3)2 - (2x-1)(2x+1) = 10
=) 4x2 - 24x + 36 - 4x2 + 1 = 10
=) -24x + 37 = 10
=) -24x = -27
=) x = \(\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
Chúc bạn hok tốt =))
có (x-3)(x+3) là hằng đẳng thức sau đó lại có \(\left(x-2\right)^2\left(x-3\right)^2\) là hằng đẳng thức rồi suy ra hai trường hợp và tính tiếp
4(x-3)^2-(2x-1)(2x+1)=10
4(x^2-6x+9)-((2x)^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+36+1=10
-24x=-27
=>x=9/8
\(3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2=2x^3-\frac{3}{2}x^2+2\)
\(2x^2-10x-3x-2x^2=26\)
-13x=26
x=-2
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Ta có (x - 2)2 - (x - 3) (x + 3) = 6
=> (x - 2)2 - (x2 - 32) = 6
=> x2 - 4x + 22 - x2 + 32 = 6
=> x2 - x2 - 4x + 4 + 9 = 6
=> - 4x + 13 = 6
=> -4x = -7
=> x = \(\frac{-7}{-4}=\frac{7}{4}\)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
\(4(x-3)^2-(2x-1)(2x+1)=10\\\Rightarrow4(x^2-6x+9)-(4x^2-1)=10\\\Rightarrow4x^2-24x+36-4x^2+1=10\\\Rightarrow-24x+37=10\\\Rightarrow-24x=-27\\\Rightarrow x=\dfrac98\)