Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
a,P(x)=4x\(^3\)+2x\(^2\)-2x+7-x\(^2\)-x
=4x\(^3\)+(2x\(^2\)-x\(^2\))+(-2x-x)+7
=4x\(^3\)+x\(^2\)-3x+7
Q(x)=-4x\(^3\)+x-14-2x-x\(^2\)-1
=-4x\(^3\)-x\(^2\)+(x-2x)+(-14-1)
= -4x\(^3\)-x\(^2\) -x -15
b, P(x)+Q(x)=4x\(^3\)+x\(^2\)-3x+7-4x\(^3\)-x\(^2\) -x -15
=\(\left(4x^3-4x^3\right)\)+\(\left(x^2-x^2\right)\)+(-3x-x)+(7-15)
= -4x-8
P(x)-Q(x)=(4x\(^3\)+x\(^2\)-3x+7)-(-4x\(^3\)-x\(^2\) -x -15)
=4x\(^3\)+x\(^2\)-3x+7+4x\(^3\)+x\(^2\) +x +15
=\(\left(4x^3+4x^3\right)\)+\(\left(x^2+x^2\right)\)+(-3x+x)+(7+15)
= \(8x^3\) + \(2x^2\) - 2x + 22
a, \(\frac{3x-7}{x-2}=3x+\frac{1}{x-2}\)
Để đạt giá trị nguyên thì 1 chia hết cho X - 2
\(\Rightarrow x-2\)là ước của 1 \(\in\left\{-1,1\right\}\)
X - 2 = -1 \(\Rightarrow\)x = 1
X - 2 = 1 \(\Rightarrow\)x = 3
Vậy x = 1 hoặc x= 3 thì số hữu tỉ đạt giá trị nguyên
b) \(\frac{x^2+4x+7}{x+2}=\frac{\left(x+2\right)^2+3}{x+2}=x+2+\frac{3}{x+2}\)
Dễ thấy x nguyên nên x + 2 nguyên.
\(\Rightarrow\)\(\frac{x^2+4x+7}{x+2}\inℤ\Leftrightarrow x\frac{3}{x+2}\in Z\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(x+2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(-1\) | \(-3\) | \(1\) | \(-5\) |
Vậy \(x\in\left\{-5;-3;-1;1\right\}\)
a,x^2-7x=0
<=>x(x-7)=0
<=>th1 x=0
th2 x-7=0=>x=7
vậy x=0 hoặc 7
\(a^2-7a=0\)
\(\Rightarrow a\left(a-7\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\a-7=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\a=7\end{cases}}\)
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
Tìm số tự nhiên x: \(2^{x-1}+5.2^{x-2}=224\Leftrightarrow2.2^{x-2}+5.2^{x-2}=224\)
\(\Leftrightarrow2^{x-2}.\left(5+2\right)=224\Leftrightarrow2^{x-2}.7=224\)
\(\Rightarrow2^{x-2}=32\Leftrightarrow2^{x-2}=2^5\)\(\Rightarrow x-2=5\Leftrightarrow x=7\)
Vậy x=7
Tìm x biết: \(\frac{3}{7}=\frac{2x+1}{3x+5}\)
\(\Rightarrow3\left(3x+5\right)=7\left(2x+1\right)\Leftrightarrow9x+15=14x+7\)
\(\Leftrightarrow14x+7-\left(9x+15\right)=0\Rightarrow5x+\left(-8\right)=0\)
\(\Leftrightarrow5x=8\Rightarrow x=\frac{8}{5}\)
Vậy x=8/5
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
\(\dfrac{189}{3^{2x-7}}=7\\ \Rightarrow3^{2x-7}=\dfrac{189}{7}\\ \Rightarrow3^{2x-7}=27\\ \Rightarrow3^{2x-7}=3^3\\ \Rightarrow2x-7=3\\ \Rightarrow2x=3+7=10\\ \Rightarrow x=\dfrac{10}{2}=5\)
Vậy x = 5