Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 3.(x-2)+2.(x-3)=13
x=5
b. (x+1).(2-x)-(3x+5).(x+2)=-4x2+1
x=-9/10
c.x.(5-2x)+2x.(x-1)=13
x=13/3
d. (2x+3)2-(x-1)2=0
x=-2/3
e. x2.(3x-2)-8+12=0
x vô ngiệm
f x2+x=0
x=-1
g. x3-5x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a) \(3\left(x-2\right)+2\left(x-3\right)=1\)\(3\)
\(3x-6+2x-6=13\)
\(5x=13+6+6\)
\(5x=25\)
\(x=25\)
c) \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
d) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\left(x+4\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x+4=0\\3x+2=0\end{cases}}=>\orbr{\begin{cases}x=-4\\x=\frac{-2}{3}\end{cases}}\)
f) \(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
g) \(x^3-5x=0\)
\(x^2\left(x-5\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x-5=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=5\end{cases}}\) \(\)
\(\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)
\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)
\(12x^2-48-12x^2-36x-27\) \(=52\)
\(-36x-75=52\)
\(-36x=127\)
\(x=\frac{-127}{36}\)
\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)
\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)
\(4x^2+4x-1-4x^2+4+2x=5\)
\(6x+3=5\)
\(6x=2\)
\(x=3\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)
\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)
\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)
\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)
\(x^3-2-x^3-3x^2+9x+27=15\)
\(-3x^2+9x+25=15\)
\(-3x^2+9x+10=0\)
\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)
\(x=\frac{9+\sqrt{201}}{6}\)
các câu còn lại tương tự
Sửa: a)\(3x^2-12=0\)
\(\Rightarrow3x^2=12\)
\(\Rightarrow x^2=\frac{12}{3}=4\)
\(\Rightarrow x=\sqrt{4}=2\)
Vậy: x=2
b)\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+5=0\\2-x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
Vậy: \(x=-5;2\)
c)\(\Rightarrow2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-1=0\\2x+5=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{5}{2}\end{array}\right.\)
Vậy: \(x=1;-\frac{5}{2}\)
A) ( x + 2)2 - ( x -2)(x +2) = 0
<=>(x+2)[(x+2)-(x-2)]=0
<=>(x+2)*4=0
<=>x+2=0 <=>x=-2
B) (3x + 2) + (x + 1)2 - (2x - 5)(2x + 5) = -12
<=>3x+2+x2+2x+1-4x2+25+12=0
<=>-3x2+5x+40
\(\Delta=5^2-\left(-4\left(3.40\right)\right)=505\)
\(\Rightarrow x_{1,2}=\frac{-5\pm\sqrt{505}}{6}\)