Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2.\left(x+\frac{2}{5}\right)+1\frac{1}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)+\frac{5}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)=\frac{-7}{10}\)
\(x+\frac{2}{5}=\frac{-7}{20}\)
\(x=\frac{-13}{20}\)
Vậy \(x=\frac{-13}{20}\)
b)\(x-1\frac{1}{8}-\frac{2}{3}x-\frac{5}{6}x=75\%\)
\(\left(x-\frac{2}{3}x-\frac{5}{6}x\right)-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x=\frac{15}{8}\)
\(x=\frac{-15}{4}\)
Vậy \(x=\frac{-15}{4}\)
Answer:
\(\left(x-\dfrac{1}{2}\right)^2=4\)
\(\left(x-\dfrac{1}{2}\right)^2=\left(\pm2\right)^2\)
TH1: \(\left(x-\dfrac{1}{2}\right)^2=2^2\)
\(x-\dfrac{1}{2}=2\)
\(x=2+\dfrac{1}{2}\)
\(x=\dfrac{5}{2}\)
TH2: \(\left(x-\dfrac{1}{2}\right)^2=\left(-2\right)^2\)
\(x-\dfrac{1}{2}=-2\)
\(x=-2+\dfrac{1}{2}\)
\(x=\dfrac{-3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
6x+3=2.(3x-1)+5 chia hết cho 3x-1=> 5 chia hết cho 3x-1=> 3x-1 thuộc Ư(5)={........}
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
=x+x+1+x-2+11=6x+1
=1-2+11-1=-x-x-x+6x
9=3x
x=3