K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Không mất tính tổng quát, giả sử \(a\le b\le c\)

\(\Rightarrow\dfrac{1}{a}\ge\dfrac{1}{b}\ge\dfrac{1}{c}\)

\(\Rightarrow2=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}=\dfrac{3}{a}\)

\(\Rightarrow a\le\dfrac{3}{2}\)

Mà a là số nguyên dương

\(\Rightarrow a=1\)

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}=1\le\dfrac{1}{b}+\dfrac{1}{b}=\dfrac{2}{b}\)

\(\Rightarrow b\le2\)

\(\Rightarrow y\in\left\{1;2\right\}\)

\(\Rightarrow z\in\left\{1;2\right\}\)

Vậy \(\left(x;y;z\right)\in\left\{\left(1;2;2\right),\left(2;2;1\right),\left(2;1;2\right),\left(2;2;1\right)\right\}\)

AH
Akai Haruma
Giáo viên
8 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM cho các số thực dương ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\geq 2\sqrt{\frac{x^2}{4}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\geq 2\sqrt{\frac{y^2}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\geq 2\sqrt{\frac{z^2}{4}}=z\)

Cộng theo vế:

\(\Rightarrow M+\frac{y+z}{4}+\frac{x+z}{4}+\frac{x+y}{4}\geq x+y+z\)

\(\Leftrightarrow M\geq \frac{x+y+z}{2}=\frac{2}{2}=1\)

Vậy GTNN của $M$ là $1$. Đẳng thức xảy ra tại $x=y=z=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 1 2019

Bài 2:

\(\text{VT}=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)

\(=(a+b+c+3)-\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)\)

\(=6-M(*)\)

Xét \(M=\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\). Áp dụng BĐT AM-GM:

\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}=\frac{ab+bc+ac+a+b+c}{2}=\frac{ab+bc+ac+3}{2}\)

\(\leq \frac{\frac{(a+b+c)^2}{3}+3}{2}=3(**)\)

Từ \((*); (**)\Rightarrow \text{VT}=6-M\geq 6-3=3\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

7 tháng 12 2017

1) Đặt T là vế trái của BĐT

Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:

\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)

Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

7 tháng 12 2017

3)b) Đặt T là vế trái, áp dụng AM-GM ta có:

\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

21 tháng 6 2017

b)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ta có:

\(\dfrac{x}{x+1}=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{y}{y+1}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right);\dfrac{z}{z+1}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{4}\left(\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

21 tháng 6 2017

chỉ tui với...

Tìm GTNN của: a. \(A=x-\sqrt{x}\) b. \(B=x-\sqrt{x-2005}\) c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\) d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\) e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\) f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\) g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\) h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\) i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\) k. \(K=x+y\) biết x và y là các số dương thỏa mãn...
Đọc tiếp

Tìm GTNN của:

a. \(A=x-\sqrt{x}\)

b. \(B=x-\sqrt{x-2005}\)

c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)

f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)

h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)

i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)

k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )

l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)

m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)

n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)

o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1

p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)

q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)

r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)

s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)

t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)

u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1

v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)

w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)

x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)

y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2

z. \(Z=3^x+3^y\) với x+y=4

0
9 tháng 2 2018

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\) (1)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+ayz+bxz}{abc}\right)=1\)

Kết hợp với (1) ta có đpcm