\(x-y=x:y=2\left(x+y\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2015

b)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x+1=x

=>0x=-1(L)

*)y=-1

=>x-1=-x

=>2x=1

=>x=1/2

              Vậy y=-1 x=1/2

c)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x-1=x

=>0x=1(L)

*)y=-1

=>x+1=-x

=>2x=-1

=>x=-1/2

Vậy y=-1 x=-1/2

d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

=>(x+y+z)2=9

=>x+y+z=3 hoặc x+y+z=-3

*)x+y+z=3

=>x=-5:3=-5/3

y=9:3=3

z=5:3=5/3

*)x+y+z=-3

=>x=-5:(-3)=5/3

y=9:(-3)=-3

z=5:(-3)=-5/3

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

14 tháng 8 2019

Trần Thanh PhươngNguyễn Văn Đạt?Amanda?svtkvtmVũ Minh Tuấn! # %Nguyễn Kim Hưngtth

14 tháng 8 2019

Mx cái này của hsg à ? Mk ko bít làm

23 tháng 7 2018

a) \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{5z^2}{125}=\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)

\(\Rightarrow5z^2=9.125=1125\Rightarrow z^2=225\Rightarrow z=\pm15\)

     \(3x^2=9.27=243\Rightarrow x^2=81\Rightarrow x=\pm9\)

     \(2y^2=9.32=288\Rightarrow y^2=144\Rightarrow y=\pm12\)

Vậy ....

   

7 tháng 9 2016

Ta có : \(x-y=xy=x:y\)

x=0

y=0

4 tháng 7 2018

Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)

                                                => \(y^2=1\) => \(y=\pm1\)

Thay \(y=1\) vào    \(x-y=x.y\) ta có : \(x-1=x.1\)

                                                                        => \(x-1=x\)=> \(0x=1\)( vô lý) => loại

Thay \(y=-1\)  vào    \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)

                                                                          => \(x+1=-x\)=> \(2x=-1\)

                                                                                                              => \(x=\frac{-1}{2}\)

\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

21 tháng 11 2017

a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)

\(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)

\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)

21 tháng 11 2017

Cảm ơn bn nhiều

16 tháng 5 2017

ta có:

\(x+y=x.y\)

\(\Rightarrow y=x.y-x=x.(y-1)\)

\(\Rightarrow x:y=y-1=x+y\)

\(\Rightarrow x=-1\)

\(thay\) \(x+y=x.y\)

\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)

\(\Rightarrow x=-1;y=\dfrac{1}{2}\)

16 tháng 7 2017

\(\dfrac{1}{y}=\dfrac{x}{4}-\dfrac{1}{2}=\dfrac{x-2}{4}=>y.\left(x-2\right)=4\)

Vì x ,y \(\in\) z nên x - 2 \(\in\) z , ta có bảng sau :

x 1 -1 2 -2 4 -4
x-2 4 -4 2 -2 1 -1
y 6 -2 4 0 3 1