K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 3x=7y => x/7=y/3=(x-y)/(7-3) = -16/4=-4

=> x=-4*7=-28

     y=-4*3=-12

3 tháng 7 2016

3x = 7y \(\Rightarrow\)  \(\frac{3x}{21}\)  = \(\frac{7y}{21}\)   \(\Rightarrow\)  \(\frac{x}{7}\)  = \(\frac{y}{3}\)   =   \(\frac{x-y}{7-3}\) = \(\frac{-16}{4}\)  = -4

Suy ra x = -4 . 7 = -28

             y= -4.3 = -12

23 tháng 5 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{-21}{7}=-3\)

+) \(\frac{x}{3}=-3\Leftrightarrow x=-9\)

+) \(\frac{y}{4}=-3\Leftrightarrow y=-12\)

Vậy x = -9; y = -12

b) Ta có : \(3x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

+) \(\frac{x}{7}=-4\Leftrightarrow x=-28\)

+) \(\frac{y}{3}=-4\Leftrightarrow y=-12\)

Vậy x = -28;  y = -12

_Chúc bạn học tốt_

2 tháng 8 2016

c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)

d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)

2 tháng 8 2016

a) Ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)

\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)

\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)

\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)

Vậy ___________________________________________________________

19 tháng 7 2016

Từ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

=>x=28

    y=12

19 tháng 7 2016

\(3x=7y\Rightarrow\frac{x}{3}=\frac{y}{7}\)

\(\frac{x}{7}-\frac{y}{3}=-\frac{16}{4}=-4\)

\(\frac{x}{7}=-4\Rightarrow x=-28\)

\(\frac{y}{3}=-4\Rightarrow y=-12\)

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

22 tháng 12 2016

Giải:

Ta có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)

+) \(\frac{x}{4}=2\Rightarrow x=8\)

+) \(\frac{y}{12}=2\Rightarrow y=24\)

+) \(\frac{z}{15}=2\Rightarrow z=30\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(8;24;30\right)\)

23 tháng 12 2016

Ta có: 3x =y

\(\Rightarrow\frac{x}{1}=\frac{y}{3}\) \(\Rightarrow\frac{x}{4}=\frac{y}{12}\) (1)

5y = 4z

\(\Rightarrow\frac{y}{4}=\frac{z}{5}\\ \Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)

Từ (1),(2) ta \(\Rightarrow\) \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\) Do đó ta có : \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)

Từ đó\(\Rightarrow\) x =2*4=8

y=2*12=21

z=2*15=30

Vậy:(x;y;z) là (8;21;30)

Chúc bạn học tốt. hihi

 

13 tháng 12 2015

ta có 3x=7y=> x/y=7/3=>x/7=y/3=x-y /7-3=-16/4=-4

=> x=-4.7=-28

y=-4.3=-12

6 tháng 10 2016

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.5}=\frac{y}{3.5}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.3}=\frac{z}{7.3}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Do đó:

\(\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=2\Rightarrow z=42\)

11 tháng 5 2018

trả lời

x=20

y=30

z=42

nha

21 tháng 11 2017

Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)

Ta có: \(\dfrac{x}{4}=k\) \(\Rightarrow\) \(x=4k\) (1)

\(\dfrac{y}{5}=k\) \(\Rightarrow\) \(y=5k\) (2)

Mà theo đề bài ta có \(xy=80\)

Thế (1) và (2) vào: \(4k.5k=80\\\)

\(\Rightarrow20k^2=80\)

\(\Rightarrow k^2=80:20=4\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=2\) hoặc \(k=-2\)

Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}=2\)

\(\dfrac{x}{4}=2\Rightarrow x=2.4=8\)

\(\dfrac{y}{5}=2\Rightarrow x=2.5=10\)

\(\dfrac{x}{4}=\dfrac{y}{5}=-2\)

\(\dfrac{x}{4}=-2\Rightarrow x=\left(-2\right).4=-8\)

\(\dfrac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)

Vậy có 2 cặp \(\left(x,y\right)=\left(8,10\right);\left(-8,-10\right)\)

21 tháng 11 2017

a, Ta có: \(2x=3y;7z=5y\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{z}{5}=\dfrac{y}{7}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.21=42\\y=2.14=28\\z=2.10=20\end{matrix}\right.\)

Vậy \(x=42;y=28;z=20\)

b, Ta có: \(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow5x:y:3z=15:5:\left(-6\right)\)\(5x-y+3z=-16\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{-16}{4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4.3=-12\\y=-4.5=-20\\z=-4.\left(-2\right)=8\end{matrix}\right.\)

Vậy \(x=-12;y=-20;z=8\)