K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(x^2+y^2-2x+6y+10=0\)

\(\Leftrightarrow x^2-2x+1+y^2+6y+3=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

12 tháng 7 2016

bạn ơi 1 và 3 ở đâu v bn

3 tháng 8 2017

\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)

vậy \(x=-1;y=-3\)

12 tháng 7 2018

f, x2+y2-2x+6y+10=0

<=>(x2-2x+1)+(y2+6y+9)=0

<=>(x-1)2+(y+3)2=0

Mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

g, x2+y2+1=xy+x+y

<=>2(x2+y2+1)=2(xy+x+y)

<=>2x2+2y2+2=2xy+2x+2y

<=>2x2+2y2+2-2xy-2x-2y=0

<=>(x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)=0

<=>(x-y)2+(x-1)2+(y-1)2=0

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}\Rightarrow}x=y=1}\)

h, 5x2-2x(2+y)+y2+1=0

<=>5x2-4x-2xy+y2+1=0

<=>(4x2-4x+1)+(x2-2xy+y2)=0

<=>(2x-1)2+(x-y)2=0

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}\Rightarrow\left(2x-1\right)^2+\left(x-y\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=y\end{cases}\Rightarrow}x=y=\frac{1}{2}}\)

f,x=1

y=-3

12 tháng 10 2017

a) x2+y2-2x-6y+10=0 <=>(x2-2x+1)+(y2-6y+9)=0

(x-1)2+(y-3)2=0 mà (x-1)2 và (y-3)2 luôn lớn hơn hoặc bằng 0

=>(x-1)2=0=>x-1=0=>x=1

=>(y-3)2=0=>y-3=0=>y=3

9 tháng 9 2017

x2+2x+y2-6y+4z^2-4z+11=0

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\)

<=>(x+1)2+(y-3)2+(2z-1)2=0

Vì (x+1)2\(\ge\)0;(y-3)2\(\ge\)0;(2z-1)2\(\ge\)0 => (x+1)2+(y-3)2+(2z-1)2\(\ge\)0

Dấu "=" xảy ra khi (x+1)2=(y-3)2=(2z-1)2=0 <=> x+1=y-3=2z-1=0 <=> x=-1;y=3;z=1/2

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

a: \(\Leftrightarrow x^3+8-x^3-3x=5\)

=>3x=3

hay x=1

b: \(\Leftrightarrow x^3-8-x\left(x^2-1\right)=8\)

\(\Leftrightarrow x^3-8-x^3+x=8\)

=>x=16

c: =>x2+2=3

=>x2=1

=>x=1 hoặc x=-1

f: \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)

=>x=1 và y=-3

29 tháng 6 2016

\(\Leftrightarrow x^2+2x+1+y^2-6x+9+4z^2-4z+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)(1)

VT(1) >= 0  với mọi x;y;z nên để đẳng thức (1) xảy ra thì: x = -1; y = 3; z = 1/2.