K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2022

a: =>(2x-1-x-3)(2x-1+x+3)=0

=>(x-4)(3x+2)=0

=>x=-2/3 hoặc x=4

b: =>-5x^2+9x=0

=>-x(5x-9)=0

=>x=0 hoặc x=9/5

c: =>2x^2-10x-x+5=0

=>(x-5)(2x-1)=0

=>x=1/2 hoặc x=5

e: =>2x(x^2-25)=0

=>x(x-5)(x+5)=0

hay \(x\in\left\{0;5;-5\right\}\)

22 tháng 7 2019

a. x.(x+3)-x2+15=0

=> x^2 + 3x - x^2 + 15 = 0

=> 3x + 15 = 0

=> 3x = -15

=> x = -5

vậy_

b. (2x-1)(x+3) - x(2x-6) =15

=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15

=> x - 3 = 15

=> x = 18

vậy_

c. x3 -36x = 0

=> x(x^2 - 36) = 0

=> x = 0 hoặc x^2 - 36 = 0

=> x = 0 hoặc x^2 = 36

=> x = 0 hoặc x = 6 hoặc x = -6

vậy_

d. 6x2 + 6x =x2+2x+1

=> 6x(x + 1) = (x + 1)^2

=> 6x(x + 1) - (x + 1)^2 = 0

=> (x + 1)(6x - x - 1) = 0

=> (x + 1)(5x - 1) = 0

=> x = -1 hoặc 5x = 1

=> x = -1 hoặc x = 1/5

vậy_

e. x(3x+1)=1-9x2 

=> x(3x + 1) = (1 - 3x)(1 + 3x)

=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0

=> (3x + 1)(x - 1 + 3x) = 0

=> (3x + 1)(4x - 1) = 0

=> 3x + 1 = 0 hoặc 4x - 1 = 0

=> 3x = -1 hoặc 4x = 1

=> x = -1/3 hoặc x = 1/4

vậy_

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

a) Ta có: \(\left(2x-4\right)\left(3x+1\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(3x+1\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\cdot7x=0\)

Vì 7≠0

nên \(\left[{}\begin{matrix}x-2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;2}

b) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\cdot3x=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x+2=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Vậy: x∈{0;-2}

c) Ta có: \(2x^2-x=0\)

\(\Leftrightarrow x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

d) Ta có: \(x^3-6x^2+9x=0\)

\(\Leftrightarrow x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: x∈{0;3}

k) Ta có: \(x^3+3x^2+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2+1\ge1>0\forall x\)(2)

Từ (1) và (2) suy ra x+3=0

hay x=-3

Vậy: x=-3

17 tháng 4 2023

cái bài a) thì số 2 đâu ra thế bạn?

<=>(x−2)[2(3x+1)+(x−2)]=0

16 tháng 8 2020

a)

pt <=>     \(x^2+4x+4+x^2-6x+9=2x^2+14x\)

<=>     \(2x^2-2x+13=2x^2+14x\)

<=>     \(16x=13\)

<=>     \(x=\frac{13}{16}\)

b)

pt <=>     \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)

<=>   \(2x^3+6x=2x^3\)

<=>   \(6x=0\)

<=>   \(x=0\)

c)

pt <=>    \(\left(x^3-3x^2+3x-1\right)-125=0\)

<=>   \(\left(x-1\right)^3=125\)

<=>   \(x-1=5\)

<=>   \(x=6\)

d)

pt <=>   \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

<=>   \(\left(x-1\right)^2+\left(y+2\right)^2=0\)     (1)

CÓ:   \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=>   \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\)       (2)

TỪ (1) VÀ (2) =>    DÁU "=" XẢY RA <=>   \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e)

pt <=>   \(2x^2+8x+8+y^2-2y+1=0\)

<=>   \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)

TA LUÔN CÓ:   \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\) 

<=>     \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

16 tháng 8 2020

a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )

<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x

<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9

<=> -16x = -13

<=> x = 13/16

b) ( x + 1 )3 + ( x - 1 )3 = 2x3

<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3

<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1

<=> 6x = 0

<=> x = 0

c) x3 - 3x2 + 3x - 126 = 0

<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0

<=> ( x - 1 )3 = 125

<=> ( x - 1 )3 = 53

<=> x - 1 = 5

<=> x = 6

d) x2 + y2 - 2x + 4y + 5 = 0

<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0

<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e) 2x2 + 8x + y2 - 2y + 9 = 0

<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0

<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)

\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

7 tháng 10 2016

b) \(3x\left(x+5\right)-2x-10=0\)

\(\Leftrightarrow3x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-5\end{cases}}\)

c) \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

TH1: \(x=0\)

TH2: \(x-3=0\Rightarrow x=3\)

\(x+3=0\Rightarrow x=-3\)

Vậy:..

d) \(\left(5+2x\right)\left(2x-7\right)=4x^2-25\)

\(\Leftrightarrow\left(5+2x\right)\left(2x-7\right)=\left(2x-5\right)\left(2x+5\right)\)

 \(\Leftrightarrow\left(2x+5\right)\left(2x-7-2x+5\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\)

\(\Leftrightarrow2x+5=0\)

\(\Leftrightarrow x=-\frac{5}{2}\)

e) \(x^2-11x+30=0\) 

\(\Leftrightarrow x^2-5x-6x+30=0\)

\(\Leftrightarrow x\left(x-5\right)-6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)