Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(3x^2+y^2+z^2+2x-2y+2xy+3=0\)
\(\Leftrightarrow (x^2+y^2+1+2xy-2y-2x)+2(x^2+2x+1)+z^2=0\)
\(\Leftrightarrow (x+y-1)^2+2(x+1)^2+z^2=0\)
Vì \(\left\{\begin{matrix} (x+y-1)^2\geq 0\\ (x+1)^2\geq 0\\ z^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)
Do đó: \((x+y-1)^2+2(x+1)^2+z^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x+y-1)^2=0\\ (x+1)^2=0\\ z^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-1\\ y=2\\ z=0\end{matrix}\right.\)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)
Vậy \(x=4\), \(y=3\), \(z=1\)
a, A = (x^2-3x)^2 - 1 >=-1
Dấu "=" xảy ra <=> x^2-3x = 0 <=>x.(x-3) = 0 <=> x=3 hoặc x=0
Vậy Min A = -1 <=> xz=3 hoặc x=0
b, Đề thiếu kìa bạn ơi
nhờ các bạn giải giúp mình với