K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2017

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

3 tháng 6 2017

Nguyễn Duy Khánh

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Ai k mình và kết bạn mình sẽ trả ơn .

9 tháng 2 2020

ko vt lại đề 

(xyz-xy)-(yz-y)-(zx-x)+(z-1)=2019

=>xy(z-1)-y(z-1)-x(z-1)+(z-1)=2019

=> (z-1)(xy-y-x+1)=2019

=> (z-1)(z-1)(y-1)=2019

vì x>y>z>0 => (x-1) khác (y-1) khác (z-1)=> x-1>y-1>z-1

nên (z-1),(x-1)và (y-1) thuộc ước của 2019={ 1,3,673,2019}

(x-1)(y-1)(z-1)= 673.3.1=2019

=> x-1=673=>x=674

=>y-1=3=>y=4

=> z-1 =1=>z=2

Vậy x=674,y=4,z=2

30 tháng 11 2017

Ta có: x+y-z=y+z-x <=> 2x=2z => x=z

Lại có: y+z-x=z+x-y <=> 2x=2y => x=y

=> x=y=z

Do x+y-z=xyz => x=x3 => x(x2-1)=0 <=> x(x-1)(x+1)=0

=> x1=y1=z1=0   ;  x2=y2=z2​=1 ;   x3=y3=z3​=-1 

18 tháng 3 2017

B=(x+y)/xyz=1/yz + 1/xz 

có (x-y)2 = x2-2xy+y2 >/ 0 => x2-2xy+y2+4xy >/ 4xy =>(x+y)2 >/ 4xy => 1/x + 1/y >/ 4/x+y , đẳng thức xảy ra <=> x=y

=> B=1/yz + 1/xz >/ 4/yz+xz = 4/z(x+y) = 4/z(1-z)

áp dụng bđt am-gm z(1-z) </ (z+1-z)2/4 </ 1/4 

=> B >/ 4/1/4 >/ 16 ,minB=16 ,đẳng thức xảy ra <=> x=y=1/4;z=1/2

18 tháng 3 2017

thanks bạn nhé