Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x/2 = y/3 = z/5 = k
=> x = 2k ; y = 3k ; z = 5k
vì xyz = 810
hay 2k . 3k . 5k = 810
30k3 = 810
k3 = 27
=> k = 3
Từ đó suy ra : a = 6 ; b = 9 ; z = 15
Vậy ...
Gọi \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow x.y.z=2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow x=3.2=6\)
\(y=3.3=9\)
\(z=3.5=15\)
Vậy x = 6; y = 9; z = 15
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
=>\(\frac{\left(x+y+z\right)2}{x+y+z}=\frac{1}{x+y+z}\)
=> x+y+z=1/2
=> y+z=2x-2
=> x+z=2y-3
=>x+y=2x+5
=> 1/2-x=2x-3
=> x=5/6
=>1/2-y=2y-3
=> y=7/6
=> z=1/2-(7/6+5/6)=-3/2
ta có\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2};\frac{y}{\frac{1}{2}-y+2}=\frac{1}{2};\frac{z}{\frac{1}{2}-z-3}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
1./ |x| + |-x| = 3 - x
<=> 2|x| +x = 3 (1)
Nếu x >=0 thì (1) <=> 3x = 3 => x = 1 (TM x>=0)
Nếu x <0 thì (1) <=> -2x+x = 3 => x = -3 (TM x<0)
PT có 2 nghiệm là: x= -3 và x = 1.
2./ ĐK: y khác 0.
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{xy-6}{6y}=\frac{1}{2}\Leftrightarrow xy-6=3y\Leftrightarrow xy-3y=6\Leftrightarrow y\left(x-3\right)=6\)
Vậy, x-3;y là U(6) = {-6;-3;-2;-1;1;2;3;6}
Có 8 cặp nghiệm là (-3;-1) (0;-2); (1;-3); (2;-6); (4;6); (5;3); (6;2); (9;1)
Bài làm:
Ta có: \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(1)
Và \(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{10}=\frac{-2x+y-z}{-6+5-10}=\frac{-22}{-11}=2\)
=> \(\hept{\begin{cases}x=6\\y=10\\z=20\end{cases}}\)
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{10}\)(*)
\(\frac{y}{2}=\frac{z}{4}\Leftrightarrow\frac{y}{10}=\frac{z}{20}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{20}=\frac{-2x+y-z}{-2.6+10-20}=-\frac{22}{-22}=1\)
: \(x=6;y=10;z=20\)